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Abstract—To understand human behaviors, action recognition
based on videos is a common approach. Compared with image-
based action recognition, videos provide much more information,
reducing the ambiguity of actions. In the last decade, many works
focus on datasets, novel models and learning approaches have
improved video action recognition to a higher level. However,
there are challenges and unsolved problems, in particular in
sports analytics where data collection and labeling are more
sophisticated, requiring people with domain knowledge and even
sport professionals to annotate data. In addition, the actions could
be extremely fast and it becomes difficult to recognize them.
Moreover, in team sports like football and basketball, one action
could involve multiple players, and to correctly recognize them,
we need to analyze all players, which is relatively complicated.
In this paper, we present a survey on video action recognition
for sports analytics. We introduce more than ten types of sports,
including team sports, such as football, basketball, volleyball,
hockey and individual sports, such as figure skating, gymnastics,
table tennis, tennis, diving and badminton. Then we compare
numerous existing frameworks for sports analysis to present
status quo of video action recognition in both team sports and
individual sports. Finally, we discuss the challenges and unsolved
problems in this area and to facilitate sports analytics, we
develop a toolbox using PaddlePaddle 1, which supports football,
basketball, table tennis and figure skating action recognition.

Index Terms—Action recognition, video analysis, sports, com-
puter vision, deep learning, survey

I. INTRODUCTION

THe number of videos is rapidly increasing and there
is a massive demand of analyzing them, namely video

understanding, such as understanding the behaviors of people,
tracking objects, recognizing abnormal behaviors, and content-
based video retrieval. Thanks to the development of video
understanding technologies, there are many applications in our
everyday life, e.g., surveillance systems. Action recognition
lies at the heart of video understanding, which is an elementary
module for analyzing videos. Researchers have put much effort
on action recognition, labeling a large number of videos [1],
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Fig. 1. The comparison among common actions in our daily life, actions in
individual sports and actions in team sports. Top: common actions in UCF101
[1], which is a coarse annotated dataset for action recognition. Middle: figure
skating actions in FSD-10 [2], which is a fine-grained annotated figure skating
dataset. Bottom: activities in volleyball, basketball and football [3], where each
action could involve multiple players.

[4]–[9] and proposing many impressive models to improve the
recognition accuracy [10]–[15]. However, the popular datasets
like ActivityNet [5] and Kinetics-400 [16] only consider the
activities in our daily life, such as walking, driving cars
and riding bikes. Although, some datasets contains sports-
related activities, the labels are coarse and it is difficult to
directly use them for specific sports analysis. In addition, to
achieve the goal of fine-grained sports action recognition, we
need to label videos that focus on specific sports, such as
football and basketball. Moreover, the fine-grained annotations
normally require domain knowledge and professional players
should be involved in video labeling. Figure 1 shows the
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Fig. 2. An example of sports categories based on references [37]–[39].

comparison between common actions in our daily life and
actions in specific sports, such as figure skating and basketball.
Obviously, to annotate the professional action, such as 3Axel
or 3Flip, domain knowledge is required. However, in many
cases, it is not easy to find many annotators with domain
knowledge for a specific sport, so a normal way is to hire a few
people with domain knowledge to train more annotators for
annotation. It could be difficult for annotators to discriminant
some actions despite we train them, resulting in noisy labels.

Recently, researchers in the communities of computer vision
and sports pay much attention to sports video analysis, includ-
ing building datasets and proposing novel methodologies [2],
[17]–[30]. In most existing works on sports video analysis,
recognizing the actions of players in videos is crucial. On
one hand, recognizing the group activities is able to assist
coaches to make better decisions and players to understand
their performances on fulfilling the coaches’ strategies. On
the other hand, recognizing the individual actions can benefit
training players via correcting the small action errors [31],
[32]. Another wide application of sports action recognition is
in sports TV programs, where there is a massive demand of
highlights generation and action recognition can significantly
improves the localization accuracy [33]–[36].

However, there are many types of sports and each type of
sport requires a specific model. Normally, we can roughly
classify sports into team sports – individuals are organized
into opposing teams that compete to win and individual sports
– participants compete as individuals. In Figure 2, we present
an example of sports categories. The analytics of team sports
like football and individual sports such as diving is different.
For team sports, each action could involve multiple players
(see Figure 1) and each player has a specific action, such
as dive and screen in basketball. In addition, the trajectory
of the ball and the interaction between the ball and players
are important in team sports analysis, hence, to accurate
recognize the actions in team sports, we need to track the
ball, multiple players and model the interactions [3]. While
in individual sports, we can just pay attention to only one
player to recognize the actions in most cases. Though in team
sports, there could be only one player who possesses the
ball, referring to individual ball possession, and we can track
the player to analyze the individual actions, the trajectories
and actions of other teammates and the interactions among
players are also important for team sports and we can use the
trajectories, actions and interactions to analyze the strategy of
a team, such as offside trap, all-out attacking and total football.
Normally, for team sports, tacking individual players and the
ball is the first step and more effort is put into modeling the
interactions in the following steps (please refer to section IV

for more details), which is different from individual sports.

In this paper, we focus on video action recognition in
various sports. One of the most related works is proposed by
Y. Zhu et al. [40] – a study of deep video action recognition,
but it does not pay much attention to sports. Similarly, Z.
Sun et al. [41] propose a review of human action recognition
in the perspective of data modalities such as RGB images,
point cloud and WiFi signals, which does not focus on sports
either. While D. Tan et al. [42] review video-based action
recognition approaches in badminton, such as recognizing the
actions of service and smashing, while team sports and other
individual sports are not considered and the popular datasets
used for action recognition are not introduced. Although J.
Gudmundsson et al. [43], R. Bonidia et al. [44] and R. Beal
et al. [45] review multiple sports, they pay much attention
on sports data mining instead of video action recognition. M.
Manafifard et al. [46] proposes a survey on player tracking
in soccer videos, which also reviews video technologies like
object tracking and detection, however, only soccer is taken
into account. H. Shih [47] proposes a survey on video tech-
nologies in content-aware sports analysis, such as object and
video event detection, while we focus on action recognition in
sports and provide a deep learning toolbox that supports figure
skating, football, basketball and table tennis action recognition,
which is publicly available.

To sum up, the contributions of the survey are in three folds.

• First, we focus on the key part of sports video understanding
– action recognition and introduce more than ten sports,
including team sports like football, basketball, volleyball,
hockey and individual sports such as diving, tennis, gym-
nastics and table tennis.

• Second, we provide a sports genre classification and road
maps of action recognition methods in different types of
sports. In addition, we present a summary of sports-related
datasets for action recognition.

• Third, we present the current state of video action recog-
nition in different types of sports and the challenges that
should be paid attention to in the future. Moreover, to
facilitate research in sports video action recognition, we
provide a deep learning toolbox that supports video action
recognition in multiple sports, which is publicly available at
https://github.com/PaddlePaddle/PaddleVideo 2.

The rest of the paper is organized as follows. In section II,
we introduce the sports-related datasets used for action recog-
nition. We present the survey of methodologies for individual
action recognition in section III, while in section IV, we review
the methodologies for team activity recognition. In section V,
we summarize the applications of video action recognition in
sports, such as education and coaching. Section VI summarizes
the challenges that should be paid more attention to in the
future. Last but not least, we make conclusions in section VII.
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TABLE I
A LIST OF SPORTS-RELATED DATASETS USED IN THE PUBLISHED PAPERS. NOTE THAT SOME OF THEM ARE NOT PUBLICLY AVAILABLE AND “MULTIPLE”
MEANS THAT THE DATASET CONTAINS VARIOUS SPORTS INSTEAD OF ONLY ONE SPECIFIC TYPE OF SPORTS. “DET.”, “CLS.”, “TRA.”, “ASS.”, “SEG.”,

“LOC.” STAND FOR PLAYER/BALL DETECTION, ACTION CLASSIFICATION, PLAYER/BALL TRACKING, ACTION QUALITY ASSESSMENT, OBJECT
SEGMENTATION AND TEMPORAL ACTION LOCALIZATION, RESPECTIVELY. MORE DETAILS OF THE DATASET CAN BE FOUND IN SECTION II.

Datasets Sports Years Modalities Tasks # Videos Avg. length # Categories Publicly Available
CVBASE Handball [48] handball 2006 RGB CLS. 3 10m - Yes
CVBASE Squash [48] squash 2006 RGB CLS. 2 10m - Yes

UCF sports [49] multiple 2008 RGB CLS. 150 6.39s 10 Yes
APIDIS [50], [51] basketball 2008 RGB DET.& CLS. - - - Yes
Soccer-ISSIA [52] football 2009 RGB TRA. - - - Yes

MSR Action3D [53] multiple 2010 RGB, depth CLS. 567 - 20 Yes
Olympic [54] multiple 2010 RGB CLS. 800 - 16 Yes

Hockey Fight [55] hockey 2011 RGB CLS. 1,000 - 2 Yes
ACASVA [56] tennis 2011 RGB CLS. 6 - 4 Yes
THETIS [57] tennis 2013 RGB, depth, skeleton CLS. 1,980 - 12 Yes

Sports 1M [58] multiple 2014 RGB CLS. 1M 36s 487 Yes
OlympicSports [59] multiple 2014 RGB ASS. 309 - 2 Yes

SVW [60] multiple 2015 RGB DET.& CLS. 4,100 11.6s 44 Yes
Basket-1,2 [3] basketball 2016 RGB DET.& CLS. - - 4 No

Volleyball-1,2 [3] volleyball 2016 RGB DET.& CLS. - - - No
HierVolleyball [61] volleyball 2016 RGB DET.& CLS. - - - Yes

HierVolleyball-v2 [62] volleyball 2016 RGB DET.& CLS. - - - Yes
NCAA [63] basketball 2016 RGB CLS.& LOC. 14,548 4s 11 Yes

Football Action [64] football 2017 RGB CLS. 3,281 - 5 No
TenniSet [65] tennis 2017 RGB, texts LOC.& CLS. 5 - 6 Yes

OlympicScoring [66] multiple 2017 RGB ASS. 716 - 3 Yes
Soccer Player [67] football 2017 RGB TRA.& DET. - - - Yes

SPIROUDOME [68] basketball 2017 RGB DET. - - - Yes
SpaceJam [69] basketball 2018 RGB CLS. 15 1.5h 10 Yes
Diving48 [70] diving 2018 RGB CLS. 18,404 - 48 Yes

ComprehensiveSoccer [71] football 2018 RGB DET.& CLS. 220 0.77h - Yes
TTStroke-21 [72] table tennis 2018 RGB CLS. 129 43m 21 Yes
SoccerNet [24] football 2018 RGB, audio LOC.& CLS. 500 1.5h 3 Yes

Badminton Olympic [73] badminton 2018 RGB LOC.& CLS. 10 1h 12 Yes
SPIN [74] table tennis 2019 RGB TRA.& CLS. - - - No

GolfDB [75] golf 2019 RGB CLS. 1,400 - 8 Yes
AQA [76] multiple 2019 RGB ASS. 1,189 - 7 Yes

MTL-AQA [77] diving 2019 RGB ASS. 1,412 - - Yes
OpenTTGames [78] table tennis 2020 RGB SEG.& DET. 12 - - Yes

FineGym [79] gymnastics 2020 RGB CLS.& LOC. - - 288 Yes
SSET [80] football 2020 RGB TRA.& DET. 350 0.8h 30 Yes

SoccerDB [81] football 2020 RGB CLS.& LOC. 346 1.5h 11 Yes
FineBasketball [82] basketball 2020 RGB CLS. 3,399, - 26 Yes

FSD-10 [2] figure skating 2020 RGB ASS.& CLS. - - 10 Yes
FineSkating [83] figure skating 2020 RGB ASS.& CLS. 46 1h - Yes

MCFS [84] figure skating 2021 RGB LOC.& CLS. 11,656 - 130 Yes
Stroke Recognition [85] table tennis 2021 RGB CLS. 22,111 - 11 Yes

MultiSports [28] multiple 2021 RGB LOC.& CLS. 3,200 20.9s 66 Yes
Player Tracklet [86] hockey 2021 RGB TRA. 84 36s - Yes
NPUBasketball [87] basketball 2021 RGB, depth, skeleton CLS. 2,169 - 12 Yes
SoccerNet-v2 [88] football 2021 RGB, audio LOC.& CLS. 500 1.5h 17 Yes

Win-Fail [89] multiple 2022 RGB CLS. 1,634 3.3 2 Yes
Stroke Forecasting [90] badminton 2022 RGB CLS. 43,191 - 10 Yes

FenceNet [91] fencing 2022 RGB CLS. 652 - 6 Yes

II. SPORTS-RELATED DATASETS

Datasets are required to facilitate model training and eval-
uation, in particular in the era of deep learning since deep
models are normally data-hungry. Researchers have put much
effort into developing new sports-related datasets. Generally, to
construct a dataset for sports video action recognition, we need
to (1) define the type of sports that we want to investigate and
the categories of actions in the specific sport, (2) collect videos
from multiple sources, such as the internet and self-recorded
videos, (3) process the collected videos like trimming and
then annotate the processed videos. The annotations could vary
based on the goal of the proposed dataset, but it should provide
trimmed videos and the corresponding labels or untrimmed
videos with the start and end time of each action and the

2The default language is Chinese and the English version can be found
at https://github.com/PaddlePaddle/PaddleVideo/blob/develop/README en.
md. More details in English, including supported datasets, configuration,
model zoo, installation and usage can be found at https://github.com/
PaddlePaddle/PaddleVideo/tree/develop/docs/en.

action category. In some datasets, the annotation process could
be more complicated. E.g., apart from annotating action labels
and temporal positions, bounding boxes of objects that impose
the actions are also annotated in AVA dataset [92]. In this
section, we provide a comprehensive review of sports-related
datasets and the list of datasets is shown in table I.

A. Football

Football is one of the most popular sports in the world and
researchers pay much attention to football activity recognition,
developing numerous datasets with different scales.

Soccer-ISSIA [52] is a relatively small dataset, composed
of 18,000 high resolution frames recorded by 6 static cam-
eras. The recorded videos are first automatically processed
to extract blobs that indicate moving players and then the
annotated bounding boxes are validated by humans. Soccer-
ISSIA [52] are normally used for player tracking, detection
and team activity recognition. Similarly, Soccer Player [67]
is developed for player detection and tracking, comprising of
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2,019 annotated frames with 22,586 player bounding boxes.
The limitation of this dataset is the scale is small.

Football Action [64] is a private dataset composed of self-
recorded videos that are captured using 14 synchronized and
calibrated Full HD cameras and the position of each player is
annotated using a bounding box. There are five categories of
activities: pass, shoot, loose clearance and dribble. Though the
dataset is composed of videos recorded by multiple cameras,
it is not publicly available.

ComprehensiveSoccer [71] is composed of 222 broad-
cast videos and 170 video hours in total. The dataset is
annotated in 3 levels: positions of players using bounding
boxes, event and story annotation at a coarse granularity and
temporal annotations of shots. Totally, there are 11 categories
of events, 15 types of stories and 5 types of shots, such as
free kick&goal, corner and solo drive. The dataset can be
used for various tasks in football video analysis, such as
action classification, localization and player detection. The
advantage of this dataset is dense and multi-level annotations,
however, the video quality is low (360P and 720P) and the
data distribution is imbalanced.

SoccerNet [24] is a large-scale dataset for football action
recognition and localization. There are 500 complete soccer
match videos collected from European leagues during 2014-
2017. The total number of temporal annotations is 6,637 and
the label of each temporal annotation is one of three categories:
goal, substitution and yellow or red card. The actions are
relatively sparse in SoccerNet, i.e., there are only 8.7 actions
per hour on average. One limitation of this dataset is that there
are only 3 categories.

SSET [80] is three times smaller than SoccerNet, compris-
ing of 350 football match videos, totaling 282 video hours.
Similar to ComprehensiveSoccer, the annotations are in three
levels: bounding boxes of players, event/story categories and
shot categories, but SSET is larger than ComprehensiveSoc-
cer dataset. Also, similar to ComprehensiveSoccer, the data
distribution is imbalanced.

SoccerDB [81] is in the same scale as SoccerNet, which
is composed of 171,191 video segments trimmed from 346
soccer match videos and the total length of the videos is 668.6
hours. SoccerDB also annotates the positions of players using
bounding boxes, which contain 702.096 bounding boxes. 11
labels are taken into account for activity annotation, including
goal, foul, injured, red/yellow card, shot, substitution, free
kick, corner kick, saves, penalty kick and background. Each
segment belongs to one category and has a time boundary. In
addition, 17,115 highlights in soccer match videos are also
annotated, therefore, the dataset can be used for player de-
tection, activity recognition, activity localization and highlight
detection.

SoccerNet-v2 [88] extends SoccerNet [24] via re-labeling
the 500 untrimmed videos. In SoccerNet, there are only 3
categories, while SoccerNet-v2 has 17 categories, such as
throw-in, foul, indirect free kick, corner, shots on target, shots
off target, direct free kick, clearance, substitution, kick-off,
offside, yellow card, red card, goal, penalty, yellow-to-red card
and ball out of play. Moreover, the actions in SoccerNet-v2
are much denser than these in SoccerNet, e.g., there is one

action every 25 seconds in SoccerNet-v2, whereas, there is
only 8.7 actions per hour in SoccerNet. Similar to SoccerNet,
SoccerNet-v2 can be employed for action recognition and
localization.

Basically, large-scale datasets+deep models dominate the
field of soccer video action recognition in recent years, in-
creasing the popularity of SoccerNet [24] and SoccerNet-
v2 [88]. While SoccerDB [81], SSET [80] and Comprehen-
siveSoccer [71] are more feasible for the tasks that require
player detection.

B. Basketball

Basketball has drawn much attention from researchers ow-
ing to its popularity in the world and numerous basketball
datasets at different scales have been developed.

APIDIS [50], [51] is composed of seven videos of the
same basketball match, which is recorded by seven calibrated
cameras located in different positions on the basketball court.
The positions of players and balls are annotated using bound-
ing boxes. Clock and non-clock actions are also annotated,
such as throw, violation, foul, pass, positioning and rebound.
Each action has a time boundary and a label, thus, APIDIS
can be used for both player detection and basketball action
recognition. The dataset is challenging since the contrast
between the background and players is low [67]. However,
the small scale limits its applications.

Basket-1,2 [3] contains two basketball frame sequences
– one has 4000 frames captured by 6 cameras and another
has 3000 frames captured by 7 cameras. The cameras are
synchronized and each can capture 25 frames per second.
There are four action categories in the dataset: possessed ball,
passed ball, flying ball, and ball out of play. Basket-1,2 can
be used for basketball action recognition and ball detection.

NCAA [63] is a relatively large dataset for basketball
action recognition, composed of 257 untrimmed NCAA game
videos and the video length are normally 1.5 hours. After
processing, the dataset comprises 14,548 video segments with
time boundary, each of which contains an action that belongs
to one of 14 categories, such as 3-pint success, 3-point fail,
steal, slam dunk success and slam dunk fail. In addition,
NCAA also provides 9,000 frames with bounding boxes of
players, therefore, people can also use it for player detection.
There is no annotation of the ball, hence, it can not be used
to model the interaction between the ball and players.

SPIROUDOME [68] is similar to APIDIS, where the
videos are captured using 8 cameras. The positions of
players are annotated using bounding boxes, therefore,
SPIROUDOME is generally employed for player detection.

SpaceJam [69] comprises 10 categories of basketball ac-
tions, including step, race, block, dribble, ball in hand,
shooting, position, walk, defensive position and no action.
SpaceJam collects 15 videos of the NBA championship and
the Italian championship from YouTube and the length of
each video is 1.5 hours. Besides RGB images, the estimated
poses of players are also provided. Normally, SpaceJam can
be used to develop skeleton-based action recognition models.
This dataset is small-scale, limiting its applications.
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FineBasketball [82] is developed for fine-grained basket-
ball action recognition, containing three broad categories –
dribbling, passing and shooting, and 26 fine-grained cate-
gories, such as behind-the-back dribbling, cross-over drib-
bling, hand-off, one-handed side passing, lay up shot, one-
handed dunk and block shot. There are 3,399 video segments
in total and each category contains roughly 130 video seg-
ments on average. FineBasketball is challenging since the
dataset is imbalanced, e.g., there are 717 video segments
belonging to crossover dribbling, while the class of follow-
up shot only contains 12 video segments.

NPUBasketball [87] is composed of 2,169 self-recorded
video clips of basketball actions performed by professional
players and each video belongs to one of 12 categories:
standing dribble, front dribble, moving dribble, cross-leg drib-
ble, behind-the-back dribble, turning around, squat, run with
the ball, overhead pass (catch or shoot), one-hand shoot,
chest pass (catch or shoot), and side throw. Different from
FineBasketball and SpaceJam, NPUBasketball provides not
only RGB frames, but also depth maps and skeletons of
players, thus, it can be used for developing various types
of action recognition models. Since this dataset is composed
of self-recorded videos, it is difficult to transfer the models
trained on it to broadcasting videos.

C. Volleyball

Though volleyball is a relatively popular sport in the world,
there are only a few volleyball datasets and most of them are
on small scales.

Volleyball-1,2 [3] contains two sequences – one comprises
10,000 frames and another is composed of 19,500 frames. The
positions of the ball are manually annotated using bounding
boxes, however, detecting the ball is challenging since it moves
fast and blurred after striking.

HierVolleyball [61] is developed for team activity recog-
nition, containing 1,525 annotated frames from 15 YouTube
volleyball videos. Each player has an action label defined as
waiting, setting, digging, falling, spiking, blocking and others,
and some players perform a group activity, such as set, spike
and pASS.

HierVolleyball-v2 [62] extends HierVolleyball, comprising
4,830 annotated frames from 55 YouTube volleyball videos.
There are 9 categories of players’ actions: waiting, setting, dig-
ging, failing, spiking, blocking, jumping, moving and standing,
and winpoint is also considered a team activity category. The
positions of players are also annotated using bounding boxes,
and they can be used for both player detection and action
recognition.

Though the mentioned volleyball datasets are composed of
dense annotations like player bounding boxes, the scale is
relatively small and the action categories are coarse.

D. Hockey

Hockey Fight [55] is a proposed for binary classification:
fight and non-fight in hockey games, composed of 1,000 video
clips from National Hockey League (NHL) games. Each clip
contains 50 frames and has a label indicating fight or non-fight.

Player Tracklet [86] comprises 84 video clips from broad-
cast NHL games and the average length of the videos is
36s. The positions of players and referees in each frame are
annotated with bounding boxes and identity labels like players’
names and numbers. Player Tracklet can be applied for player
tracking and identification.

It lacks datasets for fine-grained hockey action recognition.
There are only two categories in Hockey Fight and Player
Tracklet is only for player detection. In addition, the scale of
the two datasets is small.

E. Tennis

Tennis is an individual sport, attracting tens of millions of
people and researchers have constructed various datasets for
tennis video analysis.

ACASVA [56] is developed for tennis action recognition,
in particular for evaluating primitive players’ actions in tennis
games, where there are six broadcast videos of tennis games
and three categories of actions: hit, non-hit and serve. The
positions of players and time boundaries of actions are labeled,
however, the dataset only provides the extracted features of
video clips instead of the original videos.

THETIS [57] is composed of 1,980 self-recorded videos
belonging to 12 tennis actions: four backhand shots (backhand,
backhand with two hands, backhand slice, backhand volley),
four forehand shots (forehand flat, forehand slice, forehand
volley, forehand open stands), three service shots (service flat,
service kick, service slice) and smash. Besides RGB frames,
THETIS also provides 1,980 depth videos, 1,217 2D skeleton
videos and 1,217 3D skeleton videos, so it can be used for
developing multiple types of action recognition models.

TenniSet [65] comprises five tennis videos of the 2012
London Olympic matches from YouTube and six categories
of events are considered, such as set, hit and serve. The time
boundary of each event is labeled, therefore, it can be used
for both recognition and localization. Interestingly, TenniSet
also provides textural descriptions of actions, such as “quick
serve is an ace”, so it can also be used for action retrieval.

The limitation of the existing tennis datasets is that the scale
is small and annotations of ACASVA are coarse. Nevertheless,
they provide multiple modalities, such as RGB frames, textual
descriptions and depth maps, which benefit the research on
multimodal learning.

F. Table Tennis

Similar to tennis, strokes in table tennis are important and
multiple datasets have been developed for table tennis stroke
recognition.

TTStroke-21 [72] is composed of 129 self-recorded videos
of 94-hour games in the egocentric perspective. There are
1,378 annotated actions, each of which belongs to one of
21 categories, such as serve backhand spin, forehand push,
backhand block and forehand loop. Though the strokes in
table tennis games are relatively fast, TTStroke-21 is not a
challenging dataset and one possible reason is that the videos
have a high frame rate (120 FPS).
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SPIN [74] also comprises self-recorded videos captured by
two high-speed cameras (150 FPS), totaling 53 hours and 7.5
million high-resolution (1024×1280) frames. The positions of
the ball are annotated using bounding boxes and 30 locations
of players’ joints are also labeled using heatmaps (15 joints
for each player) in each frame. The dataset can be used for
multiple tasks like ball tracking, pose estimation and spin
prediction based on the trajectory of the ball and the player’s
poses.

OpenTTGames [78] consists of 12 HD videos of table
tennis games (5 videos for training and 7 short videos for
testing). Ball coordinates are annotated in each frame and
4,271 events are labeled, each of which has a label – ball
bounces, net hits or empty events. In addition, 4 frames before
each event and 12 frames after are labeled using segmenta-
tion masks, including human, table and scoreboard, hence,
OpenTTGames can be used for semantic segmentation, ball
tracking and event classification.

Stroke Recognition [85] is similar to TTStroke-21 but
much larger, composed of 22,111 trimmed videos and each
video contains a stroke belongs to one of 11 categories. The
dataset is less challenging, e.g., a random forest with 21 trees
achieves an accuracy of 96.20% [85].

P2A [93] is one of the largest datasets for table tennis
analysis, composed of 2,721 untrimmed broadcasting videos,
and the total length is 272 hours. The authors annotate each
stroke in videos, including the category of the stroke and the
indices of the starting and end frames. Plus, the stroke labels
are confirmed by professional players, including Olympic table
tennis players.

Since all datasets except for P2A are composed of self-
recorded videos, limiting the applications of these datasets.
Though P2 uses broadcasting videos, the data is imbalanced
and the annotations are noisy.

G. Gymnastics

There are few datasets for gymnastics and one recent
work named FineGym [79] is developed for gymnastic action
recognition and localization, consisting of 303 videos with
around 708-hour length. FineGym is annotated in a hier-
archical manner, e.g., there are four high-level event labels,
15 categories of action sets for 4 events and 530 categories
of element actions. The time boundaries of actions and sub-
actions are labeled, therefore, Gymnastics can be used for
fine-grained action recognition and localization. The task of
event/set-level action recognition and localization is relatively
easy, while element-level action recognition and localization
are much more challenging.

H. Badminton

Badminton Olympic [73] is composed of 10 videos of
“singles” badminton matches from YouTube and each video
is generally within one hour. There are multiple types of
annotations in the dataset. First, the positions of players in
1,500 frames are annotated using bounding boxes. Second,
751 temporal locations of when a player wins a point are
annotated. Third, the time boundaries and labels of strokes

are annotated, where there are 12 categories of strokes, such
as serve and lob. With three types of annotations, Badminton
Olympic can be used for multiple tasks – player detection,
point localization, action recognition and localization.

Stroke Forecasting [90] is a most recent dataset, consisting
of 43,191 trimmed video clips and each video clip has a
stroke that belongs to one of 10 categories – smash, push,
clear, defensive shot, net shot, drive, drop, lob, long service
and short service. In addition to badminton action recognition,
the dataset can also be used for stroke forecasting, i.e., given
previous strokes in a rally, the model should predict what the
next stroke is.

I. Figure skating

There are three dataset proposed for figure skating action
recognition in recent years – FSD-10 [2], FineSkating [83]
and MCFS [84].

FSD-10 [2] comprises ten categories of figure skating ac-
tions (Change Combination Spin 4, Fly Camel Spin 4, Choreo
Sequence 1, Step Sequence 3, Double Axel, Triple Axel, Triple
Flip, Triple Loop, Triple Lutz, Triple Lutz-Triple Toeloop) and
each action has 91-233 video clips, ranging from 3s to 30s.
In addition to action labels, FSD-10 also provides scores of
actions for action quality assessment.

FineSkating [83] is composed of 46 videos of figure skating
competitions in 2018 and 2019, each of which is around 1 hour
long. The labels are designed in a hierarchical manner, i.e.,
event labels and action labels. There are seven event labels,
such as jump and spin, and each event has multiple actions,
e.g., the event of jump contains 7 actions: Axel, Flip, Toeloop,
Loop, Lutz, Salchow and Euler. Moreover, the start time, end
time and score of each action are also labeled, hence, it can be
used for both action recognition and action quality assessment.

MCFS [84] consists of 11,656 video segments from 38
figure skating competitions, totaling 17.3 hours and 1.7 million
frames. Similar to FineGym [79], MCFS has three-level anno-
tations: 4 set (jump, spin, sequence, none), 22 subsets (Camel
spin, Axel,· · · ) and 130 element actions (double Axel, double
Flip, triple Axel, · · · ). The time boundaries of actions are also
annotated, so MCFS can be applied for action recognition and
localization.

J. Diving

Diving48 [70] contains 16,067 diving video segments for
training and 2,337 for testing, totaling 18,404 video segments
and covering 48 fine-grained categories of diving. Each class
of action is composed of multiple elements, such as backward
take-off and a half twist. Compared with existing datasets for
action recognition, Diving48 has a relatively low bias, which
is fairer for model evaluation.

By contrast, MTL-AQA [77] is developed for diving action
quality assessment, consisting of 1,412 samples and each
sample is annotated with an action quality score, action class
and textural commentary, therefore it can be used for multiple
tasks, including action quality assessment and recognition.
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K. Multiple Types of Sports

There are several datasets supporting multiple sports classi-
fication, where each video has a label indicating the category
of sports, such as football, basketball and gymnastics, and
a model is supposed to classify the videos. Generally, these
datasets are used for coarse classification.

UCF sports [49] is proposed in 2008, composed of 150
video clips with 10FPS. The length of videos ranges from
2.02s to 14.40s and there are 10 categories, including diving,
golf swing, kicking, lifting, riding a horse, running, skate-
boarding, swing bench, swing side and walking.

Two years later, W. Li et al. [53] develop MSR Action3D,
which contains 576 sequences of depth maps instead of RGB
frames and people can use it to recognize sports actions, such
as tennis serve, tennis swing and golf swing. The videos are
in MSR Action3D are self-recorded.

Olympic [54] is a relatively large dataset, including 800
videos for 16 categories like long jump, high jump, tennis
serve, diving and vault, and each category has 50 videos. The
videos in Olympics are from Youtube instead of self-recorded,
therefore, occlusions and camera movements are involved in
videos, being more challenging.

Sports 1M [58] is a much larger dataset, containing around
one million videos that are from YouTube and 487 categories.
There are 1,000-3,000 videos from each category so the
distribution of videos is relatively balanced. Moreover, the
labels are designed in a hierarchical manner, i.e., the high-
level nodes like team sports, ball sports, winter sports are used
for coarse classification and the leaf nodes, such as eight-ball,
nine-ball and blackball of billiards can be used for fine-grained
classification. To some extent, using this million-scale dataset,
we can alleviate the problem of data-hungry in deep learning.

SVW [60] is a dataset for both action classification and
detection, composed of 4,100 videos and 44 action categories
belonging to 30 types of sports, such as soccer, swimming,
tennis and volleyball. One property of this dataset is that
the videos are captured by smartphones from the view of
coaches and the quality of the videos is normally lower than
the broadcasting videos, resulting in challenges for action
recognition.

THUMOS [94] is a challenge on untrimmed video action
recognition and in THUMOS’15, the training dataset is com-
posed of 13,000 trimmed videos from UCF101 [1] action
classes and the validation and test datasets are composed of
untrimmed videos, so it can be used for two tasks: action clas-
sification and temporal action localization. Multi-THUMOS
[95] extends THUMOS’14 dataset using dense, multi-label,
and frame-level action annotations, which is composed of 400
videos with 38,690 annotations of 65 action classes.

Recently, MultiSports [28] is proposed for multi-person
sports, which is more challenging since each activity can in-
volve multiple players who can perform different actions. The
dataset covers four team sports – aerobic gymnastics, football,
basketball and volleyball, and 66 categories of actions. There
are 3,200 videos and 37,701 action instances. Apart from
annotating video segments (temporal labels), MultiSports also
provides bounding boxes of players involved in the activities,

therefore, it can be used for action recognition, temporal and
spatial localization.

Besides recognizing the actions in sports, some other
datasets are proposed for action assessment, i.e., a model
should not only recognize the actions, but also provide a
score that indicates the quality of the action. OlympicSports
[59] is proposed to evaluate the quality of diving and figure
skating actions, comprising 159 diving videos and 150 figure
skating videos from Youtube, while OlympicScoring [66]
extends it by collecting more videos and introducing more
types of sports, which is composed of 370 diving videos,
170 figure skating videos and 176 vault videos. However,
the number of videos in OlympicScoring is still limited for
deep learning based methods. In contrast, AQA [76] dataset
includes seven categories of sports: synchronous diving–10m
platform, singles diving–10m platform, synchronous diving–
3m springboard, gymnastic vault, skiing, snowboarding and
trampoline. There are 1,189 videos in total.

Interestingly, Win-Fail [89] is proposed for recognizing win
or fail of actions. Though actions could be very complex, the
results of actions, i.e., win/fail can be recognized via reasoning
on the movements of objects. Win-Fail is composed of 817
win-fail video pairs collected from multiple domains like trick
shots and internet win-fails.

L. Others

CVBASE Handball [48] is developed for handball action
recognition, comprising three synchronized videos and each
video is 10-minus long. The trajectories of seven players, team
activities like offensive, defensive and individual actions like
passes, shot are annotated. Similar to CVBASE Handball,
CVBASE Squash [48] composed of two 10-minus videos
of different matches also provides trajectories of players and
categories of strokes, such as lob, drop and cross.

GolfDB [75] is proposed to facilitate the analysis of golf
swings, consisting of 1,400 high-quality golf swing video
segments belonging to eight swing categories, such as toe-up,
top, impact and so on. In addition to action labels, GolfDB
also provides bounding boxes of players, player name and sex.

FenceNet [91] is composed of 652 videos belonging to
6 categories – rapid lunge, incremental speed lunge, with
waiting for lunge, jumping sliding lunge, step forward, and
step backward. The actions are performed by expert-level
fencers. In addition to RGB frames, the dataset also provides
3D skeleton data and depth data.

III. INDIVIDUAL ACTION RECOGNITION

In this section, we dive in to the review of individual action
recognition, i.e., each action involves only one person.

A. Traditional Models

Generally, an action recognition model consists of at least
two modules: (1) video feature extraction and (2) classi-
fier, which is shown in Fig. 3. Hand-crafted features dom-
inate traditional models. One simple approach is extracting
low/middle-level features of each frame using GIST [96]
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Fig. 3. An illustration of action recognition models. Generally, a feature
extraction module and a classifier are required for action recognition.

or Histogram of Oriented Gradients (HOGs) [97] and then
averaging the frame features over time for classification [4].
H. Kuehne et al. [4] evaluate multiple feature extraction
approaches on various datasets, such as UCF Sports [49],
showing that using GIST features achieves better performance
(60.0%) than using HOGs (58.6%) on UCF Sports since the
features are biased to the background, e.g., the sports of ball
normally occur on grass field.

Instead of using 2D HOGs, E. Ijjina [98] applies HOG3D
[99] to extract video features and a multi-layer perceptron
(MLP) as classifier. In contrast, T. Campos et al. [56] employ
HOG3D features + kernelized Fisher discriminant analysis
(KFDA) for tennis action recognition, achieving AUC of
84.5% on ACASVA [56].

Action bank is proposed by S. Sandanand and J. Corso
[100], which is a high-level representation for action recogni-
tion, Action bank employs a template-based action detector,
which is invariant to appearance changes. The detector is
also applied to multi-scale and multi-view videos to be more
robust to scales and viewpoints. After that, template actions
are selected. Generally, an action bank with N action detectors
and M samples yields a N ×M × 73-D feature space. Using
an action bank for feature extraction achieves the accuracy of
95% on UCF sports.

It is believed that motion plays an important role in ac-
tion recognition, and various approaches are proposed to use
motion information for action recognition, such as Motion
Boundary Histogram (MBH) [101], Histograms of Optical
Flow (HOF) [102] and dense trajectories [103], all of which
are based on optical flow. MBH is more robust to camera
motion, achieving better performance. H. Wang et al. [104]
propose improved trajectories for action recognition, where
camera motion is taken into account, and the model is able
to concentrate on the moving objects, achieving much better
performance, e.g., using the original trajectories achieves the
accuracy of 62.4% on Olympic dataset and MBH achieves
82.4%, whereas using the improved trajectories finally obtains
91.1% on Olympic [54].

In addition to HOG, Scale-Invariant Feature Transform
(SIFT) [105] is also widely applied to action recognition. M.
Chan et al. [106] propose motion SIFT (MoSIFT) to extract
video features, where both spatial and temporal are considered,
i.e., first, MoSIFT employs histogram of gradients to extract
spatial appearance and then employs histogram of optical flow
to extract motion features. MoSIFT achieves 89.5% accuracy
on Hockey Fight [55], outperforming Space-Time Interest
Points (STIP) [107] (59.0%).

TABLE II
TRADITIONAL MODELS FOR ACTION RECOGNITION.

Method Venue UCF Sports Olympic
Kovashka et al. [108] CVPR-2010 87.27 -

Wang et al. [104] CVPR-2011 88.20 -
Klaser et al. [109] THESIS-2010 86.70 -

Wu et al. [110] CVPR-2011 91.30 -
Sadanand et al. [100] CVPR-2012 88.20 -

Wang et al. [111] BMVC-2009 - 92.10
Laptev et al. [112] CVPR-2008 - 91.80
Wong et al. [113] CVPR-2007 - 86.70

Schuldt et al. [114] ICPR-2004 - 71.50
Kim et al. [115] CVPR-2008 - 95.00

Niebles et al. [54] ECCV-2010 - 72.10

Though spatial-temporal features extracted using HOG,
HOF and SIFT can achieve relatively good performance
on sports action recognition datasets like UCF Sports and
Olympic (see Table II), it is normally time-consuming to
calculate hand-crafted spatial-temporal features. Moreover,
traditional models cannot be trained in an end-to-end manner,
i.e., the feature extraction module and classifier are learned
separately. Recently, researchers pay more attention to deep
learning models, proposing many approaches to sports video
action recognition and boosting the accuracy of recognition to
a higher level.

B. Deep Models

Currently, deep models dominate video action recognition.
Traditional methods normally require many storage spaces
to store the extracted features and they are not appropriate
for large-scale datasets, while deep models are more feasible
and can be trained in an end-to-end manner via SGD by
running many steps and thanks to the development of GPU and
distributed parallel computing techniques, which makes deep
learning methods appropriate to million-scale video action
recognition. Typically, there are four types of deep models:
2D model, 3D model, Two/multi-stream model and skeleton-
based model. We show the basic architectures of four typical
models in Fig. 4 and more details can be found in the following
subsections.

1) 2D Models: 2D models employ 2D convolutional neural
networks (CNN) or transformers [154] to process each video
frame separately and then fuse the extracted features for
prediction.

A. Karpathy et al. [58] introduce CNNs into video ac-
tion recognition, proposing four-time information fusion ap-
proaches: (1) single-frame fusion – using a shared CNN to
extract features of every single frame and then concatenate
the final representations for classification, (2) early fusion –
using a 3D kernel with the size of 11×11×3×T to combine
information of frames across a time window, (3) late fusion
– using a shared CNN to compute the representations of two
separate frames with the distance of 15 frames and a fully
connected layer to fuse the single-frame representations (4)
slow fusion – implementing a 3D kernel in the first layer
and then slowly fusing the information of frames in higher
layers of the network. The experiments show that slow fusion
is superior to other fusion approaches, e.g., slow fusion obtains
60.9% accuracy on Sports 1M [58], while single-frame fusion,
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Fig. 4. An illustration of deep models for action recognition. We present 4
types of deep models: 2D model, 3D model, two-stream model and skeleton-
based model. Note that we only present the basic frameworks and there could
be some other variants (more details can be found in section III-B).

early fusion and late fusion achieve 59.3%, 57.7% and 59.3%,
respectively. Interestingly, using hand-crafted features like
HOG only achieves 55.3% accuracy, which is considerably
lower than using CNNs, indicating that deep models are
promising for sports video action recognition and inspiring
researchers to develop more deep models.

Another family of 2D deep models is directly using Long-
short Term Memory (LSTM) [155] networks to capture tem-
poral information, which is relatively popular in early deep
models. In 2015, Y. Ng et al. [116] propose an approach
that combines 2D CNNs and LSTMs, i.e., first, using a
shared 2D CNN to obtain spatial representations of frames
and then applying a multi-layer LSTM to fuse the spatial
representations. Also, J. Donahue et al. [117] propose a
similar model which uses a two-layer LSTM, termed Long-
term Recurrent Convolutional Networks (LRCN). While N.
Srivastava et al. [118] employ an LSTM-based auto-encoder
to learn better video representations trained in an unsupervised
manner. Latter, C. Gan et al. [119] propose a Lead-exceed

Neural Network (LENN) which is similar to the model in
[116], but LENN uses web images to fine-tune the lead
network to filter out irrelevant video frames.

As mentioned above, temporal information fusion is crucial
in 2D models. Alternatively, L. Wang et al. [120] propose a
Temporal Segment Network (TSN) for video action recogni-
tion, which is composed of a spatial CNN and a temporal
CNN. First, an input video is divided into some segments and
the short snippets composed of RGB frames, optical flow and
RGB differences are randomly sampled from segments. After
that, the snippets are fed into spatial and temporal networks
to make predictions. Finally, we can obtain a prediction by
aggregating the snippet prediction scores. TSN uses temporal
information in two ways: (1) it directly introduces optical flow
into the framework, (2) similar to late fusion in [58], TSN
aggregates the snippet predictions. Finally, the 2D TSN that
only using RGB frames obtains impressive performance, e.g.,
61.4% accuracy on FineGym [79] and 87.3% on the generic
action recognition dataset – UCF101 [1]. Another variant of
TSN is using key video frames instead of random sampling,
namely KTSN [2]. Applying key video frames achieves better
performance on FSD-10, i.e., 63.3% vs. 59.3%.

Instead of using simple aggregation approaches, such as
concatenation and linear combination, B. Zhou et al. [147]
propose a Temporal Relational Network (TRN) to capture
the temporal relations among frames, where the relations are
computed using an MLP and can be plugged into any existing
frameworks. TRN remarkably improves the performance on
FineGym [79], obtaining 68.7% accuracy.

However, using MLPs in TRN is time-consuming when
considering many frames and cannot well capture useful low-
level features. To address this issue, J. Lin et al. [13] propose
a simple yet efficient module, namely Temporal Shift Module
(TSM) to capture temporal information for action recognition,
where spatial features are extracted using 2D CNNs on video
frames and then inserting TSM into 2D convolutional blocks.
TSM achieves 70.6% accuracy on FineGym [79], outperform-
ing 2D TSN, 2D TRN and some 3D approaches like I3D [7]
but having lower computational complexity.

In recent 2 years, vision transformers (ViT) [154] become
increasingly popular for computer vision tasks, where multi-
head self-attention [156] is employed to replace convolutional
kernels. G. Bertasius et al. [122] investigate different com-
binations of spatial self-attention and temporal self-attention
(space-only, joint space-time, divided space-time, sparse local-
global and axial attention), where spatial attention is performed
over patches belong to the same video frame and temporal
attention is applied to patches across frames, yielding a model
termed TimeSformer. Experiments show that using divided
space-time attention outperforms other architectures, achieving
81.0% accuracy on Diving48 [70]. Similarly, VidTr [123] em-
ploys separable attention (temporal attention first and then spa-
tial attention) to reduce computational complexity, achieving
80.5% accuracy on Kinetics-400. While Vision Transformer
Network (VTN) [124] employs a temporal transformer to fuse
frame representations, obtaining 79.8% accuracy on Kinetics-
400. Instead of using temporal attention to fuse information
of different frames, RViT [125] employs recurrent mechanism,
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which takes less memory and obtains competitive performance
on Kinetics-400, i.e., 81.5% accuracy.

In summary, for 2D deep models, we can find that both
spatial and temporal modules are shifting to transformers since
transformers are much more powerful to model sequences and
to extract frame features, however, transformers have more
learnable parameters, requiring more computational resources.
In addition, training a large model is non-trivial due to the
difficulty of convergence. Another trend is adopting pre-
training, i.e., using large-scale image datasets like ImageNet
[157] to pre-train the spatial networks.

2) 3D Models: Compared with 2D models, 3D models
normally treat a sequence of frames as a whole and apply
3D convolutional neural networks or cube-based transformers
to simultaneously capture spatial and temporal information.

3D CNN for action recognition [158] is a pioneer work pro-
posed by S. Ji et al., which is composed of a hardwired layer,
two 3D convolutional layers, two subsampling layers, one 2D
convolutional layer and a fully-connected layer. Though the
proposed network is relatively small and only evaluated on
small datasets, this work presents a prototype of 3D CNNs
for action recognition and achieves better performance than
using 2D CNNs.

Later, in 2015, D. Tran et al. [126] design a modern and
deep 3D architecture – C3D for large-scale action recognition,
where eight 3D convolutional layers with 3×3×3 kernel size
are adopted. C3D obtains 61.1% accuracy on Sports 1M [58],
which is relatively competitive. Likewise, J. Carreira and A.
Zisserman [7] propose a Inflated 3D CNN (I3D), where a 2D
kernel with N ×N size is expanded into a N ×N ×N 3D
kernel and the parameters of 3D kernels are also from pre-
trained 2D kernels via bootstrapping. Compared with C3D,
I3D is much deeper, stacking 9 3D inception modules [159]
and 4 individual 3D convolutional layers. With these modern
designs, I3D obtains much better performances on multiple
datasets, e.g., 95.6% vs. 82.3% on UCF101 [1].

Directly expanding N×N 2D convolution into N×N×N
3D convolution can significantly increase the number of pa-
rameters, improving the capacity of deep models but also
raising computational complexity and the risk of overfitting.
To mitigate the problem, Z. Qiu et al. [127] propose a Pseudo
3D (P3D) network, where 3D convolution is substituted by
stacking a 2D convolution and a 1D convolution. Similarly,
D. Tran et al. [128] explores different architectures (2D, 3D
and (2+1)D), finding that stacking a 2D convolution with
1×N×N kernel size and a t×1×1 1D convolution is superior
to other architectures. While S3D [129] replaces part of 3D
inception modules in I3D [7] with 2D inception modules to
balance the performance and computational complexity. Later,
D. Tran et al. [130] propose a set of architectures, termed – 3D
Channel-Separated Networks (CSN), to further reduce FLOPs,
where group convolution, depth convolution and different
combinations of them are explored. CSN achieves much better
performance than 3D CNNs with only one-third FLOPs of 3D
CNNs.

SlowFast [12] is composed of two branches – one is the
slow branch with a low frame rate and another is the fast
branch with a high frame rate. The slow branch with a low

frame rate can pay more attention to spatial semantics, while
the fast branch pays more attention to object motion. To
achieve this, the network of the slow branch is designed only
using 2D convolution in the bottom layers and using (1+2)D
convolution in the top layers, whereas the fast branch uses
(1+2)D convolution in each layer. Note that the fast branch
is designed to capture object motion instead of high-level
semantics, thus it can be a lightweight neural network. In
addition, SlowFast adopts lateral connections to fuse slow and
fast features. With elaborate designs of a slow branch, fast
branch and lateral connections, SlowFast achieves state-of-the-
art performance on several popular action recognition datasets.

To model long video sequences, S. Zhang [145] introduces
Temporal Fully Connected Operation into SlowFast, proposing
TFCNet, where the features of all frames are combined by
an FC layer. With a simple operation, TFCNet boosts the
performance on Diving48 to 88.3%, nearly 11% higher than
that achieved by SlowFast.

STM [132] adopts two modules – Channel-wise Spatial-
Temporal Module (CSTM) and Channel-wise Motion Module
(CMM), where CSTM employs (2+1)D convolution to fuse
spatial and temporal features, while CMM only uses 2D
convolution but concatenates the features of three successive
frames. Compared with P3D [127] and R3D [128], STM
performs better.

X3D [133] expand 2D CNNs in four manners – space, time,
depth and width, which explores a number of architectures,
finding that high spatial-temporal networks are superior to
other models. X3D is inferior to SlowFast on Kinetics-400
(79.1% vs. 79.8%), but X3D has fewer parameters and takes
less time during training and inference. To further reduce
the number of parameters and FLOPs, D. Kondratyuk et al.
[136] propose Mobile Video Networks (MoViNets) that are
able to process streaming videos. Tow core techniques are
applied in MoViNets – the first one is Neural Architecture
Search (NAS) [160] for efficient architectures generation and
the second one is stream buffer technique that equips 3D CNNs
to tackle streaming videos with arbitrary length. With these
two techniques, MoViNets only requires 20% FLOPs of X3D,
but achieves better performance.

SlowFast [12] shows that introducing different temporal
resolutions benefits action recognition, however, it applies
an individual network to each resolution, which is time-
consuming. In contrast, TPN [134] applies one backbone net-
work and uses a temporal pyramid to 3D features in different
levels, i.e., low frame rate for the high-level features to capture
semantics and high frame rate in low-level features to capture
motion information. TPN achieves the same performance on
Kinetics-400 but only adopts one branch.

After 2020, the number of transformers using 3D modules
is rising. Compared with 2D transformer-based models like
TimeSformer [122] which separately uses spatial and tempo-
ral self-attention, 3D transformer-based models execute self-
attention over non-overlap cubes, which is more similar to
3D convolution. ViViT [14] expand ViT into video action
recognition via using tubelet embedding. Also, ViViT explores
different architectures of transformers – spatial-temporal trans-
former, factorised encoder, factorised self-attention and fac-
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torised dot-product, finding that spatial-temporal transformer
performs the best on large datasets but overfits small datasets
and needs much more FLOPs than other architectures since
spatial-temporal transformer executes self-attention over all
tokens with a computational complexity of N2

t , where N2
t

denotes the number of tokens.
MViT [136] mimic the multi-scale architectures of CNNs,

introducing multi-head pooling attention into ViT [154], i.e.,
high resolution for low-level features and low resolution for
high-level features. In terms of action recognition, 3D pooling
attention is applied. Though MViT executes self-attention over
all spatial-temporal tokens, the number of tokens drops when
it goes deeper and the dimension of token embedding is low
in shallow layers, hence, the FLOPs of MViT are around
1/5 of ViViT FLOPs. Compared with ViViT, MViT with
fewer parameters and less computational cost achieves similar
performance on Kinetics-400.

Similar to MViT, Video Swin Transformer (ViSwin) [138]
uses different resolutions in different levels, but it only reduces
the spatial resolution in each level and keeps the tempo-
ral resolution. One important property of ViSwin is using
3D shifted window based self-attention, which reduces the
computational complexity and increases the receptive field
via stacking multiple layers. Finally, ViSwin-large achieves
84.9% accuracy on Kinetics-400 with ImageNet-21K pre-
trained parameters and a high spatial resolution (384×384).

Mformer [137] also uses cuboid embedding like MViT
[136] and ViViT [14], but it applies separate space and time
positional encoding like TimeSformer [122]. The key differ-
ence between Mformer and ViViT is the trajectory attention
module. Different from joint space-time attention and divided
space-time attention, trajectory attention models the proba-
bilistic path of a token among frames, where the similarity
between each pair of tokens is calculated, but self-attention is
performed along the time dimension to compute trajectories.
Trajectory attention has the same computational complexity as
joint space-time attention, i.e., quadratic complexity in both
space and time, taking more time than divided space-time
attention. To speed up the calculation, Mformer introduces
an approximation approach, achieving 81.1% accuracy on
Kinetics-400.

As we have mentioned above, transformer-based models
normally split frames into 2D non-overlap patches or 3D non-
overlap cubes, thus, the objects in videos could be divided into
different patches or cubes. missing object-centric information.
ORViT, short for Object-Region Vision Transformer [139]
introduces object-dynamic module and object-region attention
into vision transformers. In the object-dynamic module, object
bounding box coordinates are encoded using the box position
encoder, while in the object-region attention module, object
representations obtained by RoIAlign [161] are employed to
generate key and value vectors. With these two modules,
ORViT pays more attention to objects and achieves 88%
accuracy on Diving48, 8% higher than the baseline. Though
introducing object features can benefit the model to capture
more semantics, it requires multi-object tracking to obtain the
bounding boxes of objects.

Similar to Masked Language Models (MLM) [144], re-

searchers also develop a number of masked video models.
BEVT [140] expands BEIT [162] to video domain. Briefly,
BEVT predicts the representations of masked patches, where
the presentations are obtained by VQ-VAE [163]. Likewise,
VIMPAC [142] predicts patch representations obtained by
VQ-VAE, but uses a 24-layer BERT-like backbone instead of
ViSwin [138] and applies contrastive learning during train-
ing – discriminating positive video clip pairs from negative
ones. Though VIMPAC employs both patch representation
prediction and contrastive learning, it is inferior to BEVT
and one possible reason is that ViSwin is more powerful and
the parameters of the image Swin are shared with ViSwin,
hence, it can well model spatial information. Alternatively,
MaskFeat [141] employs MViT [136] as the backbone and
explores predicting the features of the masked patches obtained
by different approaches, such as HOG, VQ-VAE and DINO
[164], finding that predicting HOG is slightly worse than using
DINO but DINO requires a pre-trained model.

Through the numbers in Table III, we can make the conclu-
sion that 3D models are normally superior to 2D models, but
3D models could be time-consuming and cost more computa-
tional resources. Also, we can find that the pre-train-fine-tune
paradigm is increasingly popular for 3D models, in particular
for 3D transformer-based models since it is straightforward to
introduce the tricks of MLM into video models.

3) Two-stream Models: Two-stream models normally take
RGB frames and optical flow as input and each stream
employs a deep neural network (see Fig. 4). RGB frames
provide both spatial and temporal information, while optical
flow mainly provides information on motion. Obviously, we
can easily expand the above 2D/3D models that only take RGB
frames as input into two-stream models, resulting in their two-
stream variants, such as TSN-Two-Stream [120], TSM-Two-
Stream [13] and TRN-Two-Stream [147]. Compared with their
one-stream versions that only use video frames, two-stream
models achieve better performance but require calculating
optical flow first and an additional neural network to obtain
deep representations of motion.

Another problem with two-stream models is how to combine
the representations of frames and optical flow. An early
work Two-Stream ConvNet [10] proposed by K. Simonyan
et al.directly averages the prediction of each stream, while C.
Feichtenhofer et al. [146] explores different fusing approaches,
including max-pooling, concatenation, bilinear, sum and con-
volution in different layers of the two-stream networks.

Recently, researchers observe that some advanced one-
stream models outperform their two-stream counterparts since
tow-stream networks have higher capacity, easily overfitting
the dataset. In addition, the generalizability of using video
frames and optical flow are different, so training a two-stream
network with one strategy is sub-optimal. W. Wang et al. [148]
endeavors to address the issues, proposing Gradient Blending
(G-Blend) where the weights of different loss functions are
estimated during training, hence, it assigns a weight to each
stream.

4) Skeleton-based Models: 2D, 3D and two-stream deep
models take RGB frames as input, while skeleton-based
models take players’ skeleton graphs as input (see Fig. 4).
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Normally, Graph Convolutional Networks (GCN) [165] are
used to model the skeleton graph composed of joints.

S. Yan et al. [149] propose a Spatial-Temporal GCN (ST-
GCN) for action recognition, which is similar to 3D convo-
lutional networks but executed on skeleton graph, achieving
30.7% accuracy on Kinetics-400. Compared with frame based
models like 2D and 3D models, the performance of ST-
GCN is much worse since it cannot capture the appearance
information, however, convolution on graphs is much faster.

AGCN [150] introduces an attention mechanism into GCN.
Three types of attention are employed in AGCN – spatial
attention, temporal attention and channel attention. With these
types of attention, AGCN achieves higher accuracy scores.
Similarly, C. Si et al. [166] propose an Attention Enhanced
Graph Convolutional LSTM Network (AGC-LSTM), where
the temporal information is captured using an LSTM and the
spatial information is captured using a GCN with attention.

Y. Song et al.improve GCNs with a bag of advanced
techniques, such as batch normalization [167], yielding an
EfficientGCN [151] that achieves competitive performance
on FSD-10, but takes less time for training and is more
explainable.

The topology of graphs is crucial for action recognition and
Y. Chen et al.propose a Channel-wise Topology Refinement
GCN (CTR-GCN) [152] to effectively model the topology.
Specifically, CTR-GCN employs a channel-wise topology
modeling block to compute the channel-wise correlation and
then models the relationship among graph nodes in different
channels. Finally, CTR-GCN achieves 66.2% accuracy on
FSD-10, better than ST-GCN and AGCN.

The drawback of using skeleton graphs composed of joints
is that we need to detect the joints first and normally the
predicted graphs are noisy, leading to worse performance on
existing datasets. Alternatively, PoseC3D [153] applies the
heatmaps of joints and limbs instead of graphs, which are
more robust than directly using skeleton graphs. Pose3D treats
the heatmaps as frames, hence, traditional 3D convolutional
networks can be adopted. Through Table III, we can find that
Pose3D is superior to other skeleton-based models, but still
inferior to two-stream models.

As we have mentioned above, skeleton-based models re-
quire detecting the joints first, resulting in extra computation
cost and prediction noise. Though using heatmaps can mitigate
the problem of noise, the performance is still worse than other
types of models.

5) Others: In addition to 2D, 3D, two-stream and skeleton-
based models, hybrid models that are composed of multiple
model types are also applied for video action recognition.
One recent work – Temporal Query Networks (TQN) [171]
combines 3D CNNs and transformers. Specifically, 3D CNNs
are used as the backbone to extract video features and trans-
formers are adopted as decoders, i.e., given a query, the
transformers output a response, where the queries are texts like
the number of flips for diving and the responses are
the corresponding attributes, such as a number or a label. The
transformer-based decoder models the relevance among visual
features, queries and responses. In terms of fine-grained action
recognition, TQN requires pre-defined action labels and each

TABLE IV
CURRENT STATE OF INDIVIDUAL SPORTS VIDEO ACTION RECOGNITION.

HERE WE ONLY LIST THE PERFORMANCE ON THE SPORTS-RELATED
DATASETS NOT IN TABLE III.

Datasets Models Years Performance
Tennis

ACASVA [56] HOG3D+CNN [98] 2020 93.78
THETIS [57] Lightweight 3D [168] 2022 90.9
TenniSet [65] Two-stream [65] 2017 81.0

Table tennis
TTStroke-21 [72] Two-stream [25] 2020 91.4

SPIN [74] Multi-stream [74] 2019 72.8
Stroke Recogn. [85] TCN [169] 2021 99.37

Badminton
Badm. Olymp. [73] TCN [169] 2018 71.49

Basketball
NCAA [63] CNN+LSTM [63] 2016 51.6

FineBasketball [82] TSN-Two-Stream [120] 2020 29.78
NPUBasketball [87] Skeleton-based [87] 2020 80.9

Football
SoccerNet [24] 3D [24] 2018 65.2

Others
Hockey Fight [55] Two-stream [170] 2017 97.0

GolfDB [75] CNN+LSTM [75] 2019 79.2
FenceNet [91] TCN [169] 2022 87.6

label has a set of attributes for classification, hence, we can
classify the actions based on the responses. Compared with its
3D counterparts, TQN shows its superiority, achieving 89.6%
on FineGym and 81.8% on Diving48.

Note that videos are composed of not only frames but also
audio, and they are family of models that adopt multiple
modalities. Similar to two-stream models, multimodal models
consist of several branches. One recent work is AudioSlowFast
[172] proposed by F. Xiao et al., where acoustic information
is introduced into the original SlowFast [12] model using an
audio branch, hence, AudioSlwoFast has 3 branches – slow,
fast and audio. While Y. Bian et al. [173] propose an ensemble
model that adopts video frames, optical flow and audio. In
our developed toolbox 3, we also adopt acoustic information
to classify football actions, where there are 8 categories, such
as red card, corner and free kick. Using multiple modalities
is able to improve the capacity of deep models and the
redundant information could make the model more robust,
however, it is difficult to combine different modalities and
training multimodal models is non-trivial [148]. In addition,
using more branches leads to large models, so overfitting can
easily occur.

In Table IV, we present current state of action recognition
in different types of sports. We can see that 3D and two-stream
models are relatively popular and the recent advanced models
like MoViNet [136] are rarely used in sports. One possible
reason is that some sports-related datasets lack challenges and
two-stream models can achieve high accuracy, e.g., 91.4% on
TTStroke-21 [72]. While some other datasets like NCAA [63]
and FineBasketball [82] are still challenging, requiring more
advanced models.

Note that many models can be applied to both common
action recognition and sports action recognition, however, the
performance of some methods is unsatisfying, e.g., skeleton-
based models perform much worse than 3D and 2D models

3https://github.com/PaddlePaddle/PaddleVideo

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3232034

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:19:36 UTC from IEEE Xplore.  Restrictions apply. 



14

GAR:  one group action is recognized as "Triple-block".

MAR:  three actions are recognized as "Block" in parallel.
IAR:  an action is

recognized as
"Block".

Fig. 5. An example of individual, group, and multi-player activity recognition
in a frame of a volleyball competition video.

on FineGym dataset, since it is difficult to detect players and
estimate their poses due to motion blur (see reference [79]
for more details). In this case, we need to design more robust
pose estimation methods to tackle the problem of motion blur,
in particular for the frames with intense actions. Also, for
broadcasting videos with multiple views and shot transitions,
we need specialized methods to handle these problems.

IV. GROUP/TEAM ACTIVITY RECOGNITION

Group/team activity recognition is one branch of the hu-
man activity recognition problem which targets the collective
behavior of a group of people, resulting from the individual
actions of the persons and their interactions. It is a basic task
for automatic human behavior analysis in many areas, such
as sports, health care and surveillance. Note that, although
group/team activity is conceptually an activity performed by
multiple people or objects, the group/team activity recognition
(GAR) is quite different from another common task – the
multi-player activity recognition (MAR) [174]. The former is
the process of recognizing the activities of multiple players,
where a single group activity is a function of the action of
each and every player within the group [175]. The activity
of a group can be observed as spontaneous emergent action,
conducted by the activities and interactions of individuals
within it. While the latter is the recognition of separate actions
of multiple players in parallel, where two or more players
participates. Figure 5 shows the differences among individual
action recognition (IAR), GAR, and MAR respectively. The
GAR example (yellow box) shows that where without knowl-
edge of all of the players on the opposite of the net, it is
improbable that the algorithm will infer the accurate actions
(e.g., if one of the players does not participate in the blocking,
the activity is “double-block” indeed). Only observing all
subjects provides enough evidence for the correct recognition.
Therefore, GAR is more challenging than individual action
recognition, requiring a combination of multiple computer
vision techniques, such as player detection, pose estimation
and ball tracking. Fig. 6 presents a typical framework for GAR.

Basically, individual networks are various and we can use
2D, 3D or skeleton-based models to extract individual features,
whereas two types of group networks dominate this field:
LSTM-based and graph-based models. An early work on group
activity recognition is proposed by W. Choi et al.in 2009 [176].

Fig. 6. A typical framework for group activity recognition (GAR). Compared
with models for individual action recognition shown in Fig. 4, GAR models
normally require player tracking, individual player feature extraction and
group feature combination, which is more complicated.

The proposed framework is composed of people detection,
tracking, pose estimation, spatial-temporal local descriptor and
classifier, where hand-crafted features – HOG is adopted.
Though there is not a group network in this model and it
is only tested on a private dataset, it inspires the following
approaches.

A. LSTM-based Models
M. Ibrahim et al. [61] proposed a hierarchical deep model

for GAR, where each player is detected first and the dynamics
of each player are modeled using an LSTM, finally, then
a group-level LSTM is adopted to aggregate all players’
dynamics and makes a prediction. The hierarchical deep model
achieves 51.1% on HierVolleyball dataset and 81.9% on
HierVolleyball-v2.

Interestingly, though T. Shu et al. [177] use a graph to model
group activities and propose a Confidence-Energy Recurrent
Network (CERN), LSTMs are applied to perform message
passing. Specifically, CERN first employs a tracker to obtain
the trajectories of players and then constructs a graph, where
each node represents an individual player position in a video
frame and each edge represents the relationship between two
nodes. Two types of LSTMs are applied – node LSTM and
edge LSTM to compute deep features of graph nodes and
edges. CERN achieves 83.6% on HierVolleyball-v2.

Similarly, T. Bagautdinov et al. [178] proposed an end-
to-end approach for GAR, where player detection and ac-
tion recognition adopt a shared fully-connected CNN. The
detection branch applies Markov Random Field (MRF) to
refine the predicted player positions and the classification
branch uses a matching Recurrent Neural Network (RNN) to
predict individual’s action and their group activity. Without
extra tracking models, the proposed model takes less time
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TABLE V
DEEP LEARNING MODEL FOR GROUP ACTIVITY RECOGNITION IN SPORTS.

Model Venue HierVolleyball-v2
M. Ibrahim et al. [61] CVPR-2016 81.9

CERN [177] CVPR-2017 83.6
T. Bagautdinov et al. [178] CVPR-2017 87.1

RCRG [23] ECCV-2018 89.5
StageNet [29] TCSVT 89.3

POGARS [179] Arxiv 93.9
Anchor-Transformer [180] CVPR-2020 94.4

DIN [181] CVPR-2021 93.1
Pose3D [153] CVPR-2022 91.3

for training and inference. In terms of performance, it obtains
87.1% accuracy on HierVolleyball-v2.

StageNet [29] is composed of 4 stages: player detection,
semantic graph construction, temporal information integration
and spatial-temporal attention. Player detection and semantic
graph construction are similar to RCRG [23], i.e., each node
of the graph represents a player position and the edges
represent the relationships determined by the spatial distance
and temporal correlations among players. In terms of temporal
information integration, structural RNNs – node RNN and
edge RNN are applied and finally the aggregated information
is fed into spatial-temporal module. Using the spatial-temporal
attention makes StageNet more explainable.

B. Graph-based Models
A. Maksai et al. [3] propose an approach to model the

interaction between players and the ball for GAR. The pro-
posed approach employs graphical models to track the ball and
detect players, resulting in a player graph and a ball graph.
In the player graph, each node represents a play location.
With massage passing over the two graphs, the proposed
approach can model the interaction between the ball and
players. However, the main purpose of this work is ball
tracking and the settings of GAR lack challenge, e.g., there
are only 4 classes of the ball state – flying, passed, possessed
and out of play.

RCRG [23] extend the two-stage framework in [177], [178]
via introducing a hierarchical relational network to replace
LSTMs, which is similar to graph neural networks, i.e., the
new representation of a node is obtained by aggregating the
information of its neighbors.

H. Yuan et al. [181] introduces dynamic relation (DR) and
dynamic walk (DW) into GAR models, proposing a Dynamic
Inference Network (DIN), where the detected players are
constructed into a spatial-temporal graph and then DR is used
to predict the relationships among players and DW is used
to predict the dynamic walk offset to allow global interaction
over the entire spatial-temporal graph. Using DR and DW,
DIN obtains 93.1% on HierVolleyball-v2.

C. Others
Recently, the poses of players are introduced into GAR.

H. Thilakarathne et al. [179] propose a Pose Only Group
Activity Recognition System (POGARS), which consists of two
key modules – player tracking and pose estimation and each
player is represented by 16 2D keypoints. After that, POGARS

stacks multiple temporal and spatial convolutional layers to
obtain high-level player representations. In addition, POGARS
investigates different person-level fusion approaches, including
early fusion and late fusion. Finally, POGARS achieves 93.2%
accuracy on HierVolleyball-v2 and the performance can be
further improved to 93.9% by using both player poses and the
ball tracklets. While Pose3D [153] adopts skeleton heatmaps
instead of the 2D coordinates and the feature extraction model
is a 3D CNN, achieving 91.3% accuracy. A more advanced
model – GIRN is presented in [182]. Similar to POGARS,
GIRN first estimates the poses of players, but it introduces
3 relational modules to model intra-person, inter-person and
person-object relationships, i.e., message passing is conducted
among the joints of the same person and different persons.
It achieves 92.2% accuracy on HierVolleyball-v2 by using
attention mechanism.

K. Gavrilyuk et al. [180] propose a transformer based model
– Anchor-Transformer, where the representations of different
players are fused via a transformer instead of an LSTM.
Similarly, Anchor-Transformer first employs a player detection
model to obtain the individuals and then fuses the individual
embeddings using a transformer for classification. It achieves
94.4% on HierVolleyball-v2 using both pose and optical flow.

Apart from volleyball, GAR in football is also investigated.
T. Tsunoda et al. [64] propose a hierarchical LSTM model
to recognize football team activities, which is similar to the
model in [61], but the videos in the football dataset are
captured by multiple synchronized cameras.

Also, we present the performances of different models in
Table V. Note that most models conduct experiments on
HierVolleyball-v2, thus, we only report the performance on
this dataset. And the proposed models are flexible and can be
transferred into other team sports like football and basketball.

V. APPLICATIONS

As aforementioned, video action recognition in sports
spawns a wide sort of applications in our daily life. We
categorize the applications into the following aspects.

Training Aids. Since the sports video corpus contains a
large number of historical records of competition and training
clips, it is a good source of information for sports coaches and
players to analyze and extract useful tactics. As one of the
most common approaches, video action recognition can pro-
vide a straightforward way to obtain the actions/events (i.e., the
basic unit of sports). Then, the action sequences/combinations
could be correlated with the winning strategies, which can
either guide the training of players or help with designing
the game plan. E.g., [183] introduces an action recognition
hourglass network (ARHN) to interpret player’s actions in ice
hockey videos, where the recognized hockey players’ poses
and hockey actions are valuable pieces of information that
potentially can help coaches in assessing player’s performance.
Another well-known case for training aid is the sports AI
coach system [184], which can provide personalized athletic
training experiences based on video sequences. Action recog-
nition is one of the key steps in the AI coach system to support
complex visual information extraction and summarization.
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Game Assistance (Video Judge). The video-based game
judge has been widely involved in modern sports video
analysis systems, where most of the systems adopt action
recognition as the elementary module. [185] proposes a vir-
tual referring network to evaluate the execution of a div-
ing performance. This assessment is based on visual clues
as well as the body actions in sequences. Upon the same
sports (diving), [77] comes up with an idea to learn spatio-
temporal features that explain the related tasks such as fine-
grained action recognition, so as to improve the action quality
assessment. Rather than judge the performance of the athlete
via action recognition, [186] develops a sports referee training
system, which intends to recognize whether a trainee makes
the proper judging signals. In this work, a deep belief network
is adopted to capture high-quality features for hand gesture
recognition.

Video Highlights. Highlights segmentation and summa-
rization in sports videos are with a wide viewership and a
great amount of commercial potential. While the foundation
for accomplishing this goal is the action recognition step in
processing the sports video. As a typical example, [187] pro-
poses an automatic highlight detection method to recognize the
spatio-temporal pose in skating videos. Through an accurate
action recognition module, the proposed method is capable of
locating and stitching the target figure skating poses. Since the
jumps in figure skating sports are one of the most eye-catching
actions/poses, it appears commonly in the highlight clips of
figure skating sports, where [188] dedicates to recognizing
the 3D jump actions and recovering the poor-visualising
actions. Another work [189] treats the video highlights as a
combinatorial optimization problem, and regards the diversity
of recognized action as one of the constraints. To maximize the
diversity and lower the recognition error, the overall quality
of the highlights video is improved drastically.

Automatic Sports News Generation (ASNG). There is a
large demand for sports news generation. Existing ASNG sys-
tems normally adopt the statistical numbers in matches, such
as the number of shots, corners and free kicks in a football
match and then use texts to describe the numbers [190], [191].
However, in many cases, the numbers are provided by a human
instead of automatically recognized in videos, which is time-
consuming and a massive workload. While video action recog-
nition techniques can automatically generate these numbers
and only require a few people to verify the final results, saving
time and reducing workload. Plus, thanks to the technique of
visual captioning, i.e., using texts to describe images [192]–
[194] and videos [195], [196], we can also directly generate
textural descriptions from videos. Nevertheless, recognizing
the actions of players is still required, since better recognition
results can significantly improve the naturalness, fluency and
accuracy of the final texts.

General Research Purposes. As one of the main branches
of video analysis, action recognition is never stopped being
studied. We can observe that the sports videos account for a
significant portion of the target video categories [197]–[201].
Not surprisingly, sports video analysis has been a very popular
research topic, due to the variety of application areas, ranging
from analysis of athletes’ performances and rehabilitation

to multimedia intelligent devices with user-tailored digests.
Datasets (videos) [48]–[56], [56], [57] focused on sports
activities or datasets including a large amount of sports activity
classes are now available and many research contributions
benchmark on those datasets. A large amount of work is also
devoted to fine-grained action recognition through the analysis
of sports gestures/poses using motion capture systems. On the
other hand, the ability to analyze the actions which occur in
a video is essential for the automatic understanding of sports.
The action recognition techniques can efficiently collect and
classify the actions/events in sports videos, and consequently
help a lot with the sports statistics analysis which is the basis
to understand the sports [47], [202]–[206].

All in all, the application of video action recognition in
sports is widely spread in different purposes and draws more
attention from either sports domains or computer vision do-
mains. In the next section, we will go through the possible
challenges when applying action recognition in realistic sports
videos.

VI. CHALLENGES AND FUTURE WORK

In this section, we summarize the challenges when applying
those action recognition baselines on sports videos in practice.
Data Collection and Annotation. As one of the crucial steps
for establishing a dataset for further research, data collection
and annotation draw more attention and their qualities directly
affect the performance of the action recognition task [7],
[207], [208]. However, the main difference between sports
datasets compared to other human action recognition datasets
(e.g., ActivityNet, Kinetics400, and UCF101) in terms of
collections and annotations are 1) Accessibility: Most of the
representative sports videos come from untrimmed live broad-
casting clips, which is access-restricted due to the authorship
or the copyright of the clips. While the self-recorded sports
videos are of comparably lower quality either in footage
resolution (without the best angle) or the content itself (e.g.,
the target players are amateurish), such datasets can lead to
the inefficient training of the action recognition algorithms,
which generates models with poor generalization ability in the
practical task; 2) Expertise: Since the sports videos normally
focus on specific sports category (e.g., hockey, volleyball, and
figure skating), the annotation requires higher expertise than
the regular human actions (e.g., walk, run, and sit). The more
professional the annotators are especially in the target sports
domain, the better the quality of the annotations is, which
leads to the promising performance of action recognition
algorithms in real inference tasks. One possible direction
is using active learning approaches [209]–[211] to reduce
the workload of annotation; 3) Multi-purpose: As a general
trend, the video dataset for actions recognition is rarely with
only one purpose, so are sports datasets. Some of the video
datasets [212], [213] also are designed to accomplish temporal
action localization, spatio-temporal action localization, and
complex event understanding. To serve multiple purposes, the
author of the dataset needs to prepare a variety of labeling
content and auxiliary feature information, which is even more
challenging for sports videos due to the specific nature of the
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actions. E.g., extracting the skeleton feature from a table tennis
video is difficult due to the dense and fast-moving nature of
the stroke actions. Compared to the general human actions
recognition datasets, sports action recognition datasets usually
take more effort to be established and developed.

Dense and Fast-moving Actions. On the one hand, the
traditional action recognition baselines [13], [119]–[122] are
designed to tackle those actions around 4 ∼ 20 (or over 20s
as an event) seconds on average, where some of the actions
in sports video are out of this range. E.g., the stroke action
in a table tennis competition commonly tasks only 0.4 ∼ 2
seconds via a conventional broadcasting camera. Fast-moving
characteristics require the action recognition algorithms to
capture relatively short-lived events from the video stream and
tolerate the background changes which is easy to confuse the
judgment in such a scenario [214], [215]. On the other hand,
as the nature of table tennis sports itself, two players take
action to stoke the ball in turns until one of the players wins a
point, where the stoke actions are in a super dense distribution
compared to other sports (e.g., soccer and basketball). There
could be 8 to 10 stroke actions in less than 6 seconds,
which means the action recognition algorithms should be more
sensitive to the boundary of two actions and it is proved to be
a challenging task for some of the state-of-the-art models [58],
[116]–[118]. Although we can fine-tune the baselines carefully
on the video datasets with dense and fast-moving actions,
the performance is still far less than expectation [131], [216]
compared to those regular action recognition tasks. Thus,
sports with fast-moving and dense actions are the potential to
be further explored in the action recognition domain and could
be a basis for developing more robust recognition algorithms.

Camera Motion, Cut, Occlusion and Low Quality. The
main difference between video datasets and still image datasets
are the motion of the target object, where the quality of
the motion features may affect the action recognition perfor-
mance [217]–[219]. The traditional way to form motion tra-
jectories heavily relies on the extraction of optical flow [220],
[221], where most of them are based on the video recorded by
the fixed camera with the complete and clear view of objects.
However, in recent sports videos/streaming, the camera motion
is no longer fixed and tends to be variant since the highlights
of the video keep changing (e.g., the zoom-in and zoom-
out highlights). This naturally leads to the cut of view and
more or less occlusion in the recorded videos/streaming, which
causes challenges to those well-established action recognition
benchmarks [2], [10], [13], [120], [128], [146]–[148] (e.g.,
those algorithms are barely tolerable to the data sample from
different camera motions, with cut and occluded objects).
Although there exists work [103], [104], [222] to take the
camera motion into consideration when designing the motion
descriptor for action recognition task, the cut and occluded
objects are still a problem which makes the feature space
inconsistent. Several works [223]–[225] intend to solve the
occlusion problem individually by modifying the structure
and attention of the motion descriptor, where it is limited
to a single target and we know that sports videos commonly
involve multiple players, which increases the complexity when
applying these occlusion-handling methods. Another challenge

is low-quality videos, e.g., low-resolution [226] video action
recognition. Though video super-resolution is able to alleviate
the low-resolution problem, biases are introduced by super-
resolution models.

Long-tailed Distribution and Imbalanced Data. Before
applying action recognition algorithms on the video datasets,
we normally check the statistics of the dataset in case of any
undesirable situation such as the long-tailed distribution of the
target actions. As we know, the long-tailed learning [227]–
[229] is one of the most challenging problems in visual
recognition, aims to train well-performing models from a large
number of frames that follow a long-tailed class distribution.
Unfortunately, sports datasets such as soccer, basketball, and
table tennis suffer a lot from such long-tailed class distribu-
tion and imbalance, which degrades the model performance
drastically [230]–[233]. This common status quo in sports
video datasets motivates us to either adopt a proper data
augmentation method prior to training or design a robust
action recognition algorithm to mitigate the negative effects
of long-tailed distribution. As shown in Figure 7, we briefly
compare the distribution of classes in general video recogni-
tion versus the distribution in long-tailed video recognition.
Further we showcase two representative datasets, which are
table tennis videos (P2A [93] dataset) and the sports video
in wild (SVW [93] dataset). The middle and bottom figures
demonstrate the class of action in untrimmed sports videos
commonly follow a long-tailed distribution and naturally form
imbalanced datasets.

Multi-camera and Multi-view Action Recognition. As
we mentioned in the Applications section, action recognition
techniques are widely used in web or TV streaming for the
purpose of Video Highlights. While the videos are normally
recorded via multiple cameras and are in different views [2],
[49], [58], [65], [70], [79], [93], this requires the robustness
and adaptability of the corresponding action recognition algo-
rithms. Via a thorough investigation in this paper, most of the
benchmarks [13], [58], [116]–[122] of action recognition on
video datasets focus on single-camera or single-view actions,
where it does not conform with the format of sports videos.
Although some of the action recognition algorithms [234]–
[236] intend to split the task into several sub-tasks (i.e.,
training separately on each view) and combine the results for
a performance promotion, it is still challenging to detect and
switch the sub-models between each view when handling a
complete sports video.

Transfer, Few-shot and Zero-shot Learning. To ensure
the accuracy of action recognition, there frequently needs to
collect a large number of video clips, extract frames from
clips, and annotate frames with fine-grained labels (such as
temporal labels and/or skeletons). The data collection and
annotation thus become extremely expensive, when sports of
multiple categories are desired. Yet another way to lower the
cost of action recognition from sports videos is to pre-train
backbone models using videos collected from a wide spectrum
of sports categories in a self-supervised manner [237]–[239]
and then fine-tune [240]–[243] the pre-trained model using
few labeled samples for the target sport analytic tasks, so as
to transfer the knowledge of video understanding to specific
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Fig. 7. Example of Long-tailed Distribution and Imbalanced Data. Top: Long-
tailed vs General [230]; Middle: The long-tailed distribution of classes in P2A
dataset [93]; Bottom: The imbalanced classes in SVW dataset [60].

sport action recognition tasks. Thus, few-shot and even zero-
shot learning [244]–[247] are requested to generalize action
recognition tasks by incorporating labeled samples and/or
explicit domain knowledge [248].

Note that common action recognition could share the same
challenges as sports action recognition. Some problems are
more significant in traditional action recognition, such as
camera motion and low-quality videos since many datasets
are constructed based on online and self-recorded videos, the
quality of which varies. While sports datasets are normally
based on broadcasting videos recorded by professional equip-
ment. On the other hand, there are some relatively significant
challenges for sports action recognition like dense action and
shot transition, which are more common in sports.

To address the above challenges, we think the following
possible directions should be considered in the future. First,
to tackle dense and fast-moving actions, two kinds of solutions
can be considered. On one hand, we can use high-speed
cameras to capture the motions, which is able to provide
much more detail and mitigate the problem of motion blur.
However, it takes much longer time and more computational
resources to process the videos recorded by high-speed cam-
eras. Alternatively, we can introduce other types of data, such
as gyroscope data to augment video action recognition. On
the other hand, models which are more robust on motion
blur should be developed. As mentioned in reference [79],
it is difficult to detect players and estimate their poses for the

frames with intense motions.
Second, for the problem of camera motion, cut and oc-

clusion, which are relatively common in sports videos, in
particular in broadcasting videos, we think specialized mod-
ules should be proposed to detect camera motion and shot
transition. It is difficult to avoid occlusion, in particular for
team sports, but using multiple cameras is able to alleviate
the problem. In this case, we need to develop models which
is able to combine the information of different views. In
addition, if the parameters of cameras are provided, 3D vision
techniques can be applied to benefit action recognition and
scene understanding [249], [250]. In addition, calibration-free
approaches draw much attention in recent years and these
techniques can be applied to multi-view action recognition
without camera calibration [251], [252].

In terms of transfer, few-shot and zero-shot learning. It is
believed that the pre-train and fine-tune paradigm are able to
handle this challenge and some models like MaskFeat [141]
have employed it, achieving much better performance (see
table III for more details). Thanks to the development of
large-scale datasets, distributed parallel computing and big
models [253]–[257], we can achieve powerful models using
pre-train and fine-tune paradigm to tackle the problems of few-
shot, zero-shot and long-tailed distribution. However, most big
models are developed for natural language processing and in
the field of sports analytics, it lacks both specific big models
and large-scale datasets. It should be promising to develop big
models for sports analytics.

Another promising direction should be action detection in
long and untrimmed videos. Many existing works concentrate
on recognising actions in trimmed videos, while sports videos
are normally long.There are some works, such as BSN [258],
BMN [259], TCANet [260], MLAD [261] and STALE [262]
focusing on action detection. BSN, BMN and TCANet employ
CNNs to extract video features, while MLDA designs two
attention blocks to model action dependencies and STALE
uses vision transformers and textual descriptions for zero-
shot action detection. Another crucial difference among these
models is that, BSN, BMN and TCANet are two-stage models,
i.e., they first localize the actions and then trim the videos for
classification, introducing localization error in the 2nd stage,
whereas STALE is a one-stage model, which can be trained
in an end-to-end manner. One-stage models with fast training
and satisfying performance should be considered for analyzing
untrimmed sports videos. Also, R. Modi et al. [263] points
out the limitations of existing datasets and methods for action
detection, which can inspire future work.

VII. CONCLUSION

In this paper, we review and survey the works on video
action recognition for sports analytics. We cover dozens of
sports, categorized into two streams (1) team sports, such
as football, basketball, volleyball, hockey and (2) individual
sports, such as figure skating, gymnastics, table tennis, tennis,
diving and badminton. Specifically, we present numerous
existing solutions, such as statistical learning-based methods
for traditional computer visions, deep learning-based methods
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with 2D and 3D neural models, and skeleton-based methods
using auxiliary information, all for sports video analytics. We
compare the performance of these methods using literature
reviews and experiments, where we clearly illustrate the status
quo on the performance of video action recognition for both
team sports and individual sports. Finally, we discuss the
open issues, including technical challenges and interesting
problems, in this area and conclude the survey. To facilitate
the research in this field, we release a toolbox for sport video
analytics for public research.
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