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Abstract—While recommender systems have been ubiquitously used in digital marketing and online business development, the
conversions of online advertising for mobile apps installation and activation sometimes are far from satisfactory, due to the lack of
feedback from App-related activities, leading to a poor record of Return on Investment (RoI). Though the advertisers, e.g., App
operators and App Store, are granted to log users’ app-related activities such as installation, activation, usages, and preferences per
the agreement, they usually limit the access to such data from advertisement publishers, due to the privacy concerns. To improve
conversions of online advertising under privacy controls, we propose Feynman—a federated learning-based advertising platform for
ecosystems-oriented mobile apps recommendation. Feynman aims at improving the RoI of mobile app recommendation from an
ecosystem’s perspective, i.e., per investment in advertising an app (Goal. 1) increasing the number of new installs/users of the app,
and then (Goal. 2) increasing the number of new active users (preferably with frequent in-app purchase activities). Incorporating with a
federated computing platform, Feynman leverages users’ records stored in advertisers to refine the pool of targeting users for ads
distribution, and jointly builds the predictive models for users’ purchase activities forecasting using features from the Ads publisher and
the advertiser. With refined target pools and more accurate models, Feynman has successfully helped several mobile apps in China by
attracting more than 100 million users to further enlarge their user populations and revenues from in-app purchases. Note that rather
than proposing new techniques for federated learning, the design of Feynman dedicates to show its promising performance in the
industrial practices of advertising using federated computing and privacy protected strategies. In three cases that we report in this
paper, Feynman outperforms the state-of-the-art plans in terms of several key measurements, including Click-Through Rates (CTR),
Conversion Rate (CVR), Cost per Action (CPA), and Non-targeting User Hit-Rates (NTHR).

✦

1 INTRODUCTION

After decades of the Internet’s developments and evolu-
tions, advertising has become one of the primary income
sources for the Internet industry [1]. Online advertisements
and recommendations have been proved to be the most
successful Internet business model that makes win-win
collaboration between advertisers and the Ads Publisher
platform. During every single year of the last decade, the
global market of online advertising was growing fast1, while
it finally achieved 400% growth after ten years. Tycoons in
the Internet era, ranging from Google to Facebook and Ama-
zon, all rely on the business incomes—hundreds of billions
of USDs2 per year—from their advertising businesses. As
the world’s largest Chinese Search Engine and Information
Feed service provider, Baidu also keeps a growing trend
of revenue with nearly a hundred of billions of RMBs
from the online advertising market3 per year, despite her
great success and rapid development in AI and Cloud busi-
ness. To support the vigorous growth of online advertising
business, a large number of techniques, including novel
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1. https://www.statista.com/statistics/276671/global-internet-
advertising-expenditure-by-type/

2. https://www.cnbc.com/2020/06/22/google-ad-revenue-will-
drop-this-year-emarketer-says.html

3. https://ir.baidu.com/index.php/news-releases/news-release-
details/baidu-announces-third-quarter-2020-results
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Fig. 1: Example of Baidu Feeds Advertisements for Recom-
mending App Installation and Activation.

algorithms [2], [3], [4], [5], [6], [7] and hardware/software
co-designed infrastructures [8], [9], [10], have been invented
by Baidu to improve the automatic creation of Ads and
personalized recommendations.

In this work, we have made non-trivial contributions in
integrative systems design for federated learning-based ad-
vertising, focusing on industrial practice in an extreme large
scale and problem studies to motivate further researches.
The details are as follows.
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Fig. 2: Impacts of Online Advertising

• New Installs (Installation) - For any mobile App, the
first business goal is to acquire new users. Figure 1 (a)
illustrates an example of Ads for mobile App installs.
Once a user clicks the Ad, the user would be transferred
to the App Store for Installation.

• New Active Users (Activation) - With more and more
new users having the App installed, the second step
is to turn them into active users and promote in-App
purchases to them. Figure 1 (b) illustrates an example
of Ads for mobile App activation. When a user has
installed the App and clicks the Ad, the user would
be transferred to the App for the contents or in-App
purchases.

The business conversions of the above advertisements bring
advertisers (i.e., the mobile App operators) what they de-
sire most–i.e., new installs, new active users, and new in-App
purchases, however only a small proportion of Ads displays
would bring the click-throughs from users, and only a
small proportion of click-throughs to the Ads would convert
to the business income (shown in Figure 2(a)). Thus the
conversion of recommendations becomes critical to achieve
a high Return over Investment (RoI) [11] from Ads.

While Baidu has launched a series of models, algorithms,
and online services [2], [4], [6], [7] that have established
good performance records in general advertising, the con-
versions [12] of online advertising for mobile Apps could
be further improved from the perspectives of “targeting”
(shown in Figure 2(b)). For example, the search engine may
recommend a short video App to a group of search users
demonstrating interest in video clips in their queries for
search, but some of these users might have already installed
the App. Even though some users might be attracted to
click the Ads, such click-through would not bring any new
installs. In the above case, the Advertiser would be charged
for Ads displays and click-throughs, while the frequent
displays of Ads to the “non-targeted” users may also hurt
the user experience4. Furthermore, recommending Ads for
in-App activities/purchases is yet another challenging task,
as users’ in-App activities and more-importantly the records
of in-App purchases are stored at Advertiser/mobile App
operator’s side but not available for Ads publishers, such as
Baidu.

Thus, to leverage users’ installation and in-App activities
data stored in the Advertiser/mobile App operator’s side,
we propose Feynman — a federated advertising platform
for ecosystems-oriented mobile apps recommendation that

4. https://digitalmarketinginstitute.com/blog/why-user-
experience-is-key-to-digital-marketing-success

has been deployed in Baidu on top of federated learning
techniques [13]. In this work, we we have made non-trivial
contributions in integrative systems design for federated
learning-based advertising, focusing on industrial practice
in an extreme large scale and problem studies to motivate
further researches. The details are as follows,
• We study the problem of online advertising to promote

the ecosystems of advertisers’ mobile Apps, in the context
of Baidu Ads System. Feynman has been designed to
leverage users’ records stored in Advertisers to refine
the pool of target users via Private Set Intersection (PSI)
techniques [14] for potential Ads publishing, and jointly
builds predictive models for conversion-oriented CTR
forecasting using features from Baidu and Advertisers
via Federated Deep Neural Networks (FedDNN) [15].
With refined target pools and conversion-oriented CTR
models, Feynman is expected to improve the performance
(conversion and user experience) of online advertising for
mobile Apps with respect to the two goals — i.e., new
App installs and in-app purchases.

• We have deployed Feynman at Baidu to serve the Ads
publishing for several startups of mobile Apps in China,
each of which has at least millions of daily active users.
Feynman helped these Apps enlarge their user populations
with new app installs and made their revenues surge
through fast-growing in-App purchases. In three cases
that we report in this paper, Feynman outperforms the
SOTA plan in terms of three RoI-related measurements
— click-through rate (CTR), conversion rate (CVR), and
Click per Action (CPA). Specifically, the A/B test results
on the three online advertising tasks show that Feynman
could achieve 20% higher CTR to attract new app installs
and 79% higher CTR for Installation+Activation Ads;
100% higher CVR for Installation Ads, 25% higher CVR
for Activation Ads, and 29% higher CVR for Installa-
tion+Activation Ads; 56% lower CPA for Installation Ads,
3% lower CPA for Activation Ads, and 16% lower CPA for
Installation+Activation Ads. Scalability analysis on large-
scale datasets demonstrates the potentials of Feynman to
handle web-scale traffics.

We organize the rest of this manuscript as follows. In
Section 2&3, we present the design of Feynman, including
the overall design framework and core components. Section
4&5 presents the experiments with results from business
performance and the systems performance perspectives.
Finally, we introduce the related works in Section 6 and
conclude this work in Section 7.

2 SYSTEMS DESIGN OF Feynman
In this section, we presents of Feynman from the perspectives
of framework designs and systems implementation.

2.1 Overall Framework of Feynman
As shown in Figure 3, the whole procedure of advertising
gets three major roles — the mobile users, the advertisers
and the Ads publisher (i.e., Baidu here) — involved in a
loop. Per user request to browse (e.g., pull the feeds or
search queries), the search engine or feeds system would
generate a stream of contents with slots available for adver-
tisement placements, then Feynman would be activated to
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Fig. 3: Feynman – Federated Learning-based Advertising System for Mobile Apps Recommendation.

insert Ads into the stream of contents through recommenda-
tion. Specifically, Feynman incorporates the data, including
users’ profiles, descriptions of Ads, and users’ click-through
records, which are stored at both sides of advertisers and
Baidu for recommendation through federated learning.

Given one mobile user requesting to search and feeds
and a set of candidate Ads for the potential recommen-
dation, Feynman matches the user with Ads using two
components as follows.

• PSI-based Users Targeting. Given a mobile user, for
every Ad in the set of candidates, Feynman first needs
to screen the user and determine whether the user is
targeted or blocked by the Advertisers. In practice, Ad-
vertisers (i.e., App operators or App stores for Feynman)
usually collect a set of non-targeting users or a set of
targeting users for commercial purposes (e.g., a user
would be targeted due to frequent in-App purchase,
or blocked as the user remains inactive after multiple
times of Ads exposure). Specifically, Feynman adopts
Private Set Intersection (PSI) [14] to intersect between
Baidu’s mobile users and the non-targeting/targeting
sets provided by the advertiser in a privacy-preserved
manner. The intersections consisting of a set of mobile
users are implemented as bloom filters [16], while the
PSI-based user screening component checks whether
the user is in the non-targeting or targeting lists via
bloom filtering and passes the user to the next step
accordingly.

• FedDNN-based CTR Prediction. Given a post-
screened user and a potential Ad for recommendation,
Feynman pushes the (i) the user’s characteristics (e.g., the
embedding of historical search records), (ii) descriptions
of the Ad, and (iii) the user’s App-related activities (e.g.,
purchase & usages) into a Federated Deep Neural Net-
work (FedDNN) for Click-Through Rate (CTR) predic-
tion. Note that the users’ characteristics and descriptions
of the Ad are all stored at Baidu side, while users’ App-
related activities are stored at the advertiser side and
not transferable to Ads publishers. Feynman first trains
FedDNN using vertical federated learning [13] in an of-
fline manner and obtained the distributed models, then
serves the online CTR prediction with the distributed
models.

Upon the CTR prediction results, Feynman forwards

the Ad and its predicted CTR into Baidu’s Ads bidding
systems [4]. Note that, in real-world advertising systems,
Feynman can use both or either of the above two components
for the recommendation.

2.2 Implementation of Feynman with Baidu Federated
Computing (BFC) Platform
As was shown in Figure 3, Feynman is implemented and
deployed on Baidu Federated Computing (BFC) platform,
which connects Baidu with servers of external collaborators.
BFC offers a set of privacy-preserved computing, commu-
nication, and data storage operators that support the PSI
and FedDNN used by Feynman. These operators are imple-
mented using alternative Privacy Enhancement Techniques
(PETs), such as Multi-Party Computation (MPC) [17], (Semi-
)Homomorphic Encryption (SHE) [18], Trusted Execution
Environment (TEE) [19] based on Intel SGX [20], Differential
Privacy (DP) [21], and Data Desensitization (Data Mask-
ing) [22]. In the following subsections, we introduce the
domain-specific language for Baidu Federated Computing
(BFC-DSL), where we include two examples of using BFC-
DSL to implement PSI and FedDNN within a dozen lines of
codes and simple configurations to bind the implementation
of PETs.

2.2.1 BFC Domain-Specific Language (BFC-DSL) and Set-
tings
BFC offers a set of Domain-Specific Language (BFC-DSL)
as programming interfaces to build learning systems upon
the BFC platform. Several key components of Feynman were
designed and built using BFC-DSL. The latest version of
BFC-DSL fully supports Groovy and Python, where the
developer can switch between them easily according to
the demand or preference. In many cases, BFC-DSL is not
intended to be used by software developers, but instead by
non-programmers who are fluent in the domain the DSL ad-
dresses. As BFC-DSL is designed for federated computing,
which makes it different from regular DSLs in the following
aspects.
• Split Compilation: BFC-DSL is a kind of distributed

contract DSL. In the compilation phase, as shown in Fig-
ure 4, the BFC compiler analyzes the semantic logic of the
DSL program and complies the codes into two programs
running on two sides to achieve the split compilation.
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• Implicit Data Access Control: The programs written by
BFC-DSL cannot directly access the data which is not
authorized by the data provider, no matter how the pro-
grams were designed. Moreover, BFC only presents the
metadata (e.g., the list of fields and types of fields) to other
sides without exposing raw data for development issues.

• Contract Mechanism: BFC-DSL acts under the rule of “E-
contract” [23], where a BFC-DSL program cannot run until
receiving authorizations from all sides. Once each side has
signed the “E-contrct”, the BFC-DSL can enable its full
functions and federated computing components.

2.2.2 BFC-DSL Example for PSI
In the following source code, we introduce a routine of PSI
user targeting functions in BFC-DSL format. As a predefined
function in line 3, psi_target() requires two parties as inputs,
which are advertiser (adv) and publisher (pub). Once a PSI
task is received, the BFC establishes a virtual environment
(i.e., VirtualEnv) and reserves a set of computation resources
(e.g., memories with its available time for PSI operation)
as shown in lines 4-6. Then, in the allocated memory, Vir-
tualEnv initialize two-party variables pa, pb in line 8-9 and
request the data with IDs from this two parties in line 11-
14, where pa obtains the predefined non-targeting_set, target-
ing_set from the Advertiser side and pb accordingly extracts
a set of candidate user data candidate_set from publisher
side. In lines 16-18, VirtualEnv calls a chosen algorithm with
its supporting facilities to process the PSI operation. Here,
as an example of a SGX-based PSI solution, the psi needs to
lunch a specific SGX server server with the assigned agent to
accomplish the PSI task. Finally, in line 20, a result of PSI is
returned and ready for the next procedure.

1 # Party_advertiser(adv)_publisher(pub)_Profile_PSI
2
3 def psi_target(adv, pub):
4 VirtualEnv.set(’task.common.memory’, ’40G’)
5 VirtualEnv.set(’task.appmaster.memory’, ’512M’)
6 VirtualEnv.set(’task.executed.timeout’, 360000)
7
8 pa = VirtualEnv.party(adv)
9 pb = VirtualEnv.party(pub)

10
11 dfa = pa.dataframe(’nontargeting_set’,’targeting_set’)
12 .select(’id’).collect()
13 dfb = pb.dataframe(’candidate_set’).select(’id’)
14 .collect()
15
16 psi = VirtualEnv.algorithm(’SGX-PSI-ClientSort’)

17 psi.set(’sgx.server’, ’agent-1577358289809-11’)
18 result = psi.intersect(dfa, dfb)
19
20 return result

Source Code 1: PSI Operation

2.2.3 BFC-DSL Example for FedDNN
In addition, we also present an example of BFC-DSL code
that trains FedDNN for CTR prediction as follows. Simi-
lar with PSI operation, the fedDNN_train() function firstly
establishes a virtual environment VirtualEnv with required
computation resources in line 4-6. Then, on VirtualEnv, the
function collects the user profile data and label information
from each side of the advertiser and publisher in a secure
way. Note that, once the DSL codes have been compiled
(i.e., split compilation), the generated programs separately
execute on both sides, while the data transmission is pro-
tected by Homomorphic Encryption (HE). The rest of the
procedure is the same as the regular training of a deep
neural network, where all the data are split into training and
validating sets (in lines 8-23). In lines 25-38, the architecture
of FedDNN is set up with pre-selected hyper-parameters. In
the end, the well-trained model returns and can be used to
predict CTR in an online manner.

1 # FedDNN training
2
3 def fedDNN_train():
4 VirtualEnv.set(’task.appmaster.memory’, ’1G’)
5 VirtualEnv.set(’task.common.memory’, ’12G’)
6 VirtualEnv.set(’task.executed.timeout’, 360000)
7
8 party_label = VirtualEnv.party(’Pub-label’)
9 party_feature = VirtualEnv.party(’Pub-features’)

10
11 x = party_feature.dataframe(
12 ’Adv_profile_train_features_date’)
13 .skip(’uuid’).collect()
14 y = party_label.dataframe(
15 ’Adv_profile_train_label_date’)
16 .skip(’uuid’).collect()
17
18 val_x = party_feature.dataframe(
19 ’Adv_profile_validation_features_date’)
20 .skip(’uuid’).collect()
21 val_y = party_label.dataframe(
22 ’Adv_profile_validation_label_date’)
23 .skip(’uuid’).collect()
24
25 nn = VirtualEnv.algorithm(’DNN’)
26
27 nn.model_shape(256, 128, 64)
28
29 nn.setModelShape(model_shape)
30 .setMaxIter(100)
31 .setLearningRate(0.01)
32 .setBatchSize(4096)
33 .setSavePeriod(5)
34 .setShuffle(True)
35 .setShuffleBatchSize(50000)
36 .setValidationSet(val_x, val_y)
37 .save(party_feature,

’profile_model_repository_features_date’)
38 .save(party_label,

’profile_model_repository_labels_date’)
39
40 result = nn.train(x, y)
41 return result

Source Code 2: Training the FedDNN

The training process of FedDNN in BFC-DSL is com-
patible with the mainstream open-source deep learning
frameworks, e.g., PyTorch, TensorFlow, and PaddlePaddle,
which is easy to customize.

3 CORE ALGORITHMS OF Feynman
This section introduces the two core algorithms used in
Feynman.

3.1 PSI-based Users Targeting
Given a mobile user (denoted as u) and a potential Ad
for the recommendation, PSI-based Users Targeting aims at
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determining whether the user is targeted or blocked by the
advertiser, where the advertiser at least should prepare one
of the following user sets.

• Targeting Set (denoted as T ) consists of the users who
are targeted by the advertiser. For example, a mobile
App company (i.e., advertiser) may operate multiple
mobile games. The advertiser may also target a user
who frequently made in-App purchases for the Ads of
other games.

• Non-targeting Set (denoted as N ) consists of the users
who are not desired by the advertiser. For example, a
user who frequently abused “free items” or cheated in
a game might not be recommended by the advertiser
for other games.

3.1.1 Offline User Set Intersection

Given the broad set of users in the Baidu ecosystem denoted
as M, Feynman adopts PSI techniques to obtain the intersec-
tion between MAU and targeting/non-targeting sets at the
advertiser’s side, such as M∩ T and M∩N respectively.
In this way, the identity of the mobile users in the complement
sets (i.e., M\(T ∪ N ) or (T ∪ N )\M) between Baidu and the
advertiser might not leak to each other.

In realistic advertising business with Advertisers, Feyn-
man supports various PSI designs, including Secure Multi-
Party Computation (SMC) [17], Parallel SMC [24], and Trusted
Execution Environments (TEE) [19] based on Intel Software
Guard Extensions (SGX) [20]. No matter which methods
are configured in Feynman, the intersection of user sets is
formed as two bloom filters [16] that encapsulate T ∩ M
and N ∩M, respectively, for efficient user screening. Details
about PSI implementations will be introduced in Appendix.

3.1.2 Online User Screening

Given the online mobile user u for the potential Ad, Feynman
screens the identity of the user using the bloom filters ob-
tained by the offline PSI and Algorithm 1. Feynman forwards
the user to the next step for CTR prediction if the user u is in
the targeting set T or if the user is not in the non-targeting
set N while the non-targeting set has been specified.

Algorithm 1: Online User Screening
Input : a user u, and the bloom filters of user set

intersections i.e., T ∩M and N ∩M
Output: {True or False} whether to forward the user

u to the next step
1 if u ∈ T ∩M or (N ∩M ̸= ∅ and u ̸∈ N ∩M) then
2 return True;
3 end
4 return False;

3.2 FedDNN-based CTR Prediction

Given a post-screened user and the potential Ad for the
recommendation, FedDNN-based CTR Prediction aims at pre-
dicting the Click-Through Rate (CTR) for further Ads bid-
ding. Specifically, for CTR prediction, FedDNN uses three
sets of features as follows.

• User Profile – the user’s characteristics including all the
authorized personal information stored in the publisher
side.

• Ad Descriptions – the descriptions of Ads covering the
target group of users, Ad content, and display platform,
etc., which are stored in the publisher side.

• App-related Activities – the user behaviors/activities
done in the related apps from the Advertiser side. For
example, in-app purchases, in-app social activities, and
app daily usage are three representative features.

Note that the labels of click-throughs are POSITIVE only and
stored at the Ads Publisher side (Baidu).

3.2.1 FedDNN Architecture
The overall architecture of FedDNN is shown in Figure 5,
where there are three models from bottom to top to sequen-
tially composing the whole structure. The architecture of
models are as follows,
• The bottom model from the Advertiser side: the shape of

hidden layers is 512×256×64, where data with total of 20
features are fed into the bottom model from the Advertiser
side.

• The bottom model from the publisher side: the shape of
hidden layers is 512×256×64, where data with total of 103
features are involved.

• The interactive model from publisher side: single layer
with 1024 neurons which is located in publisher side.

• The top model from the publisher side: the shape of
hidden layers is 256×256 with a fully-connected layer at
the end, where the model is located on the publisher side.

Ads Advertiser

App-related
Activities User Profile Ads Descriptions

Ads Publisher

Publisher Interactive Layer

+

Publisher
Embedding layer

Advertiser
Embedding layerBottom

Model

Interactive
Model

Top
Model

CTR PredictionBackpropagatrion

Forward propagatrion

Loss

Labels

(Random perturbation) 

Fig. 5: The architecture of FedDNN.

Before feeding the training data into FedDNN, Feynman
firstly aligns the samples/users between the Ads Publisher
side and the Advertiser side using PSI and sample IDs.
With the samples/users shared by both sides, Feynman
retrieves all samples/users with click-through records as
the positive samples for training. Since the overall datasets
usually are extremely imbalanced (no negative samples),
Feynman adopts a bagging-based Positive Unlabeled (PU)
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Learning [25] strategy to train the FedDNN CTR prediction
models [26].

Note that, for the users not shared by the two sides
simultaneously (only exists at Baidu’s side), Feynman pro-
poses to use all data at Baidu’s side to train a simple
Multi-Layer Preceptor (MLP) using PU learning for CTR
prediction.

3.2.2 Offline Training
Given the labeled user data with exclusive User Profile
and Ad Descriptions features provided by the Publisher and
unlabeled user data with users’ App-related Activities feature
from the Advertiser side, Feynman uses algorithms derived
from [15] to train a FedDNN model in an offline manner.
As shown in Figure 5, Feynman adopts the similar message-
passing protocol in heterogeneous neural network [27]. The
FedDNN model is distributed as two parts over both Ads
advertiser and Ads Publisher/Baidu’s sides, where both
sides own their bottom models to work with data, and the
top model is owned by the Ads Publisher/Baidu to work
with click-through labels. An interactive layer at the Ads
Publisher/Baidu’s sides concatenates the feature vectors
extracted from bottom models of both sides while random
perturbations are given to the features extracted from the
Advertiser’s side to protect users’ raw data. The architecture
of FedDNN is addressed in Appendix.

3.2.3 Online Inference
Feynman enables the online inference for CTR prediction
using the forward propagation of flow the FedDNN model.
Then, Feynman passes the CTR prediction results to Baidu
Ads System for further bidding and display. Readers are en-
couraged to refer to Baidu MOBIUS [4] and Baidu AIAds [2]
systems to understand the way that Baidu Ads System
makes the decision for Ads displays in the search results
or feeds.

4 EVALUATION ON Feynman BUSINESS PERFOR-
MANCE

Feynman has been deployed at Baidu. In this section, we
report the business effectiveness of Feynman with three
representative cases in mobile App recommendation/adver-
tising.

4.1 Experiment Setups

4.1.1 Settings of A/B Tests
We launch online A/B tests [28] via Baidu Edison Experi-
ment System5 in three advertising tasks (cases) to demon-
strate the superiority of Feynman. Specifically, we use 10%
real-world web traffics on Baidu Feeds advertisements to
conduct the test. The online A/B test lasts for one week,
where in each day, there were about 1 million page views
(with Ad displays) for the testing. To straightforwardly
showcase the advertising improvement of Feynman, we
compare the Feynman (denoted as w/ Feynman in tables)
with the advertising plan without Feynman (denoted as w/o

5. A general advertising A/B test platform designed for Baidu’s
ecosystem.

Feynman), which represents the non-federated advertising
leveraging only the data and computing resource in Baidu’s
ecosystem. We summarize the key features of the baseline –
w/o Feynman as follow,

• The data interaction parts with Advertisers, which are
the PSI-based user targeting and FedDNN-based CTR
prediction, are disabled. All the recommendation are
based on the data in Baidu’s ecosystem.

• Both w/ Feynman and w/o Feynman are established on
the same basis of Baidu’s advertising system, which
is capable of providing fully pipelined mobile app
recommendation services (i.e., the CTR prediction).

• Although without the proposed framework, w/o Feyn-
man is a powerful baseline since it builds on the Baidu
Ads ecosystem which integrates effective recommen-
dation/advertising systems such as Baidu MOBIUS
system [4] and AI Ads System [2].

For fairness of comparison, we randomly split the real-
time web traffics of Baidu’s ecosystem equally into two parts
(5% for each), and simultaneously conduct the advertising
campaign using w/ Feynman and w/o Feynman, where in this
case both advertising plans are in the same page so as to be
able to generate comparable results. Note that Baidu’s Ads
System has been well designed and optimized with the most
advanced algorithms for online advertising [4], [9], [6], [7],
[10]. Thus, the system w/o Feynman is still a strong baseline
for comparisons here.

4.1.2 Business Performance Metrics
We measure RoI-related key indicators as follow.

• Displays – the advertising volume or the amount of
published Ads in web traffic for one specific Ads.

• Ads Publisher’s Incomes (Incomes) – the incomes of
advertising from Ads Publisher/Baidu’s side. The fig-
ure of income might be re-scale as an estimate for
advertising with 100% web traffics.

• Clicks – the amount of click-through actions made by
the users/customers.

• Non-Targeting user Hit Rate from the Advertiser side
(NTHR-A) – the proportion of Click-throughs made by
non-target users/customers, which is based on the
statistical analysis from the Advertiser side. Since the
original Click-throughs stats are disclosed in Ads Pub-
lisher’s side, a third-party consulting organization for
omni-channel marketing is commissioned to estimate this
value.

• Non-Targeting user Hit Rate from Ads Publisher side
(NTHR-P) – the proportion of Ads Click-throughs made
by non-target users/customers (i.e., users in the inter-
section between Ads Publisher’s user populations and
the Advertiser’s non-targeting list).

• Click-Through Rate (CTR) – the number of Clicks ad-
vertisers receive on their Ads per number of display for
one specific Ad.

• Click Value Rate (CVR) – the conversion rate that is cal-
culated as the volumes of conversion divided by Clicks.
The change of CVR (increase) can directly indicate the
number of new active users for the targeting app, which
is one of the main observing objects for the Goal. 2.

• Cost Per Action/Acquisition (CPA): the Baidu’s Incomes
divided by the volumes of conversion.
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Among the above performance metrics, NTHR-A and
NTHR-P could NOT be measured during the A/B test based
on 5% of traffics, as they focus on the overall population
of traffics. In this work, we report NTHR-A and NTHR-P
based on two independent trials in the same length with
entire (100%) web traffics before and after the deployment
of Feynman. Since the A/B test lasts for one week, we report
the Average value of each key indicator as a result. Note
that, due to the agreement on disclosures of business
information between Baidu and advertisers, we are not
authorized to report the value of some indicators (e.g., CVR
in Case II.), where we report the change of values instead.

4.2 Case 1: Advertising for Mobile App Installs

4.2.1 Case Description

Advertiser1 is a mobile App startup that facilitates job
hunters to chat with potential employers directly online. As
an advertiser, Advertiser1 finds Baidu to achieve Goal. 1 –
increasing the number of new installs/users using Feynman.
Advertiser1 has independently collected information about
0.8 million users for both targeting users (0.13 million) and
non-targeting users (0.67 million). Then, the Baidu side uses
Feynman to advertise the apps of Advertiser1 with respect to
both targeting/non-targeting sets.

4.2.2 Results and Discussions

As shown in Table 2, Feynman raises the CTR from 0.83% to
1.00% (about 20% increase), where a higher CTR is a good
indication that users find the Ads which are helpful and
relevant. For the CVR, the result shows it has a significant
improvement (about 100% increase), where the conversion
rate directly demonstrates the effectiveness of Feynman that
advertises the Ads to the relevant customers who eventu-
ally install the target Apps. On the other hand, decreased
CPA (about 56%) means the effectiveness of advertising
inventory purchased (by the advertiser). Note that in this
A/B test, we use the conversion as the measurement of
"action" in CPA calculating, which means the same amount
of investment on advertising using w/ Feynman leads to
more conversion than w/o Feynman.

Overall, the Feynman helps the mobile app provider
bring more new installs compared to the w/o Feynman
plan and meanwhile reduce cost (advertising charge) on one
effective Ad recommendation.

4.3 Case 2: Advertising for Mobile App Activation

4.3.1 Case Description

Advertiser2 is a short video social platform startup for users
to record and share their lives. As an advertiser, Adver-
tiser2 expects to leverage Baidu’s ecosystem to further boost
its Apps Activation (new active users). Since Advertiser2
only authorizes Baidu to report a small part of advertising
achievement, the data involved and sensitive commercial
indicators (e.g., CTR and CVR values) are hidden in Table
2. As a result, we are additionally authorized to report the
NTHR-A and NTHR-P, which are directly related to the
preciseness of the user post-screening.

4.3.2 Results and Discussions
As presented in Table 1, the NTHR-A and NTHR-P both
significantly decrease in Case 2, where NTHR-A reflects
the overall hit rate on non-targeting users/customers (re-
duced about 67%) from the Advertiser side and NTHR-
P represents the same measurement from Ads Publisher
side (reduced about 65%). The dropping of these two val-
ues indicates that the recommendation tends to be more
precise than the plan without Feynman since the Ads are
less likely to be distribute to non-targeting users/customers
benefited from the user post-screening by the PSI com-
ponent in Feynman. Counter-intuitively, we still observe a
small non-targeting user hit rate (10% from Advertiser side
and 12% from Ads Publisher side). This scenario is caused
by other search-based advertising strategies/plans such as
Mobius [4] in Baidu’s ecosystem, where Mobius coinciden-
tally recommends the target Apps to users who are in the
non-targeting set provided by the Advertiser. However, the
users in the predefined Non-targeting Set are not always
showing negative behaviors, e.g., in-app purchases. Thus,
a slight tolerance of miss-displays to non-targeting users
makes sense in a practical advertising campaign. As for the
percentage difference between NTHR-A and NTHR-P, it is
because the Advertiser side has no idea about the actual
Clicks and needs to depend on the estimation from a third-
party consulting organization, which leads to a deviation of
the result from Ads Publisher side.

Similar to Case 1, other revealed indicators (CVR and
CPA) have been improved to a certain extent. As a bonus
effect, Baidu’s Incomes have a 7% increase due to the
significant increase of CVR (25%) and the slight drop of
CPA (3%), where it is win-win cooperation between Baidu
and the Advertiser using Feynman. In conclusion, Advertiser2
achieves the Goal. 2 of bringing new active users through
precise advertising using Feynman and the performance is
significantly better than the w/o Feynman plan.

4.4 Case 3: Advertising for Mobile Installation and Ac-
tivation
4.4.1 Case Description
Advertiser3 is an online real estate sales and renting service
startup. To achieve both Goal. 1 and Goal. 2, Advertiser3
initiates cooperation with Baidu and applies for using Feyn-
man to advertise its mobile Apps. Specifically, Advertiser3
establishes a Targeting Set including about 12.4 million user
information with 20 features of app-related activities, which
is delivered to Feynman to conduct federated learning with
1 billion user profile data (own 103 features) from Baidu’s
ecosystem using Feynman. With the support of Feynman PSI
component, about 5.04 million intersection data is obtained
and ready to be fed into the FedDNN-based CTR predicting
component. With the bagging-based PU learning (the size
of training data expands to about 10.08 million), Feynman
takes about 2 hours to well-train the FedDNN model and
achieves 0.87 AUC score on average in the testing data set
(training-testing splitting ratio = 9 : 1). Then, the model is
used to process the online CTR prediction.

4.4.2 Results and Discussions
As shown in the DIFF row of Table 3, Feynman outperforms
the w/o Feynman plan in term of CTR, CVR, and CPA.
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TABLE 1: Performance Comparison of Case 2. (‘-’ means undisclosed value, * Ads Publisher’s income re-scaled per day
for the Ads of Case 2, † based on two independent trails in the same length with 100% web traffics. As was mentioned in
Section 3.1, Feynman may not prioritize non-targeting users for Ads displays, however Baidu Ads system may still reach
them with the Ads, depending on the real-time traffics and conversion policies.)

Plan Incomes* NTHR-A† NTHR-P† CVR CPA
w/o Feynman 714285 30% 34% - 40
w/ Feynman 764284 10% 12% - 38.8

DIFF ↑ 7% ↓ 67% ↓ 65% ↑ 25% ↓ 3%

TABLE 2: Performance Comparison of Case 1.

Plan CTR CVR CPA
w/o Feynman 0.83% 0.60% 90
w/ Feynman 1.00% 1.20% 40

DIFF ↑ 20% ↑ 100% ↓ 56%

Specifically, Feynman increases CTR about 79% compared
to the w/o Feynman plan. Moreover, with 29% higher CVR,
Feynman draw more actual in-app profit activities or installs
among those customers who have clicked the Ad. These two
improvements lead to a natural CPA reduction (about 16%
drop), where achieving the same level of advertising effect
requires fewer Ad displays (44% drop in Displays) for Feyn-
man. Like Case 2, we observe an increase in Baidu’s Incomes
(about 29%) which again achieves a win-win situation.

Note that the Displays and Clicks are dropped, which
demonstrates the preciseness of the mobile Apps recom-
mendation with Feynman. Since Advertiser3 keeps the actual
data of new Installations and Activation in secret, we have
no idea to directly observe the increase separately for Goal. 1
and Goal. 2 in both plans. However, the overall performance
of mobile App recommendations significantly upgrades
when replacing the w/o Feynman plan with Feynman as the
advertising framework.

5 EVALUATION ON Feynman SCALABILITY

In this section, we separately explore the scalability of
the aforementioned two key components – PSI-based user
targeting and FedDNN-based CTR prediction in Feynman.
All the experiments are conducted in real-world varying-
scale environments.

5.1 Experimental Setup

We set up two component-focus testbeds with specific set-
tings and baseline algorithms as follows,

• PSI-focus: we design a series of experiments for calcu-
lating the PSI on pure number sets and varying the
size of data sets increasingly. The target performance
indicators of the experiments include the estimation of
the time cost (Duration), the size of the data involved,
intersection ratio (Overlap Ratio), the size of intersec-
tion set (Size of Resulting Set & Space Size), whether
using bucketing strategy, the peak CPU utilization, the
peak memory usage, and the peak bandwidth (total 8
metrics in Table 4). The working environment is based
on BFC V3.0.0, consisting of two computing nodes. The
configuration of each computing node: 12 Cores, 64GB
Memory, 200GB Storage, General-Purpose G2 Server,

CentOS 7.5, x86_64 (64bit). The implementation of solu-
tions in our experiments are 1) Parallel SMC (P-SMC):
Baidu variant of parallel SMC (enhanced with hash
bucketing strategy); 2) SGX: SGX-based PSI solution
with hardware-based memory encryption. Note that
both SGX and P-SMC have been well paralleled to
fully utilize the 12 Cores of every machine. For more
information about PSI implementation and its variants
in Baidu, please refer to our online technical blog6.

• FedDNN-focus: we test the scalability of FedDNN on
varying sizes of the synthetic data sets which mimics
the real-world characteristics (i.e., size and dimension)
of user information. The target performance indica-
tors of the experiments include the estimation of the
time cost, the size of the data involved, average/peak
CPU utilization, average/peak memory utilization, and
average/peak bandwidth (total 10 metrics in Table 5
and Fig. 6). The synthetic data sets are extended from
an open-sourced a9a data set [29]. We conduct the
experiments following the pattern of Case 3, where
only Targeting Set is provided from the Advertiser side
and both sides corporately train a FedDNN model
for CTR prediction. Two computing nodes are set up,
one for Ads Publisher and one for the Advertiser. The
configuration of the computing node: 48 cores, 123GB
Memory, 500GB Storage, Intel(R) Xeon(R) CPU E5-2680
v4, 2.40GHz, CentOS 7.5, x86_64 (64bit). We train the
FedDNN on a CPU-only testbed, which is adequate for
our tasks.

5.2 Results of PSI

We summarize experimental results in Table 4. Since the PSI
operations (i.e. P-SMC, and SGX) on both nodes, i.e., one for
the Advertiser side and another for Ads Publisher side, are
symmetrically set up for fair comparisons, we only present
experimental results on the node from Ads Publisher side
(Baidu) in Table 4 for further analysis.

For the overall performance of PSI, the SGX outperforms
P-SMC in terms of peak CPU utilization, peak memory
usage, and total running time cost. Unsurprisingly, SGX
establishes hardware isolation for the whole process of
PSI. For the P-SMC, we can still perceive its potential and
availability compared to SGX. Firstly, we notice that the
peak memory usage of P-SMC does not grow proportionally
to the increase of the data set, which is benefited from
the parallelism. Secondly, for large-scale PSI, P-SMC as
an algorithm-oriented plan is hardware-cost friendly than
the SGX in specific applications since the setup cost (e.g.,

6. https://medium.com/baiduxlab/private-set-intersection-
technology-a-hot-topic-in-multi-party-computing-f560cf3bf6cb

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3285935

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 08:15:36 UTC from IEEE Xplore.  Restrictions apply. 



9

TABLE 3: Performance Comparison of Case III. (* Ads Publisher’s income re-scaled per day for the Ads of Case III.)

Plan Dispalys Incomes* Clicks CTR CVR CPA
w/o Feynman 1265442 1003958 34696 2.70% 1.20% 24
w/ Feynman 714136 1302054 33765 4.90% 1.60% 20

DIFF ↓ 44% ↑ 29% ↓ 3% ↑ 79% ↑ 29% ↓ 16%

TABLE 4: Scalability Comparison among Built-in PSI Algorithms in Feynman. (PCU = Peak CPU Utilization, PMU = Peak
Memory Usage, all data were profiled at the Ads Publisher/Baidu’s side as PSI algorithms were setup in a symmetric
setting between the Advertiser and Ads Publisher/Baidu.)

Key Statistics (M = million, m = megabyte, G = gigabyte)

Overlap Ratio Resulting Set Size Storage Bucketing Size PCU PMU Peak Bandwidth Time Cost

Size of Data Set = 1M

P-SMC 50% 0.5 M 37.1 m - 10.70% 8.24 G 109.43 Mbps 139 s

SGX 50% 0.5 M 37.1 m - 8.04% Client 2.88 G 20.80 Mbps 48 s

Size of Data Set = 10M

P-SMC 75% 7.5 M 633 m 100 m× 8 35.10% 19.35 G 120.04 Mbps 597 s

SGX 75% 7.5 M 633 m - 13.80% Client 4.71 G 311.10 Mbps 190 s

Size of Data Set = 100M

P-SMC 50% 50 M 4.6 G 100 m× 8 46.90% 25.96 G 309.75 Mbps 5014 s

SGX 50% 50 M 4.6 G - 13.80% Client 3.70 G 118.00 Mbps 1427 s

purchase and rental cost) and maintenance cost for an
absolutely isolated environment of SGX are invisibly sig-
nificant. Thus, in the real applications, the trade-off should
be considered inevitably, where Feynman could pre-estimate
the workload and corresponding cost of PSI to suggest a
suitable algorithm that can fulfill the requirement of the
advertisers.

5.3 Results of FedDNN
For the data sets generated for FedDNN scalability ex-
periment, we list the basic information in Table 5. When
pre-processing the experiments, the data are duplicated
and distributed on two computing nodes, where one node
which stands for Ads Publisher side masks the data to keep
103 features remaining (103 dimensions are available) and
another node representing the Advertiser side only keeps
20 features for federated learning7. The training follows the
procedures in Section 4.2, and we record the 1) average
time consumption, 2) average/peak CPU utilization, 3) av-
erage/peak memory utilization, 4) average/peak sending
bandwidth, and 5) average/peak receiving bandwidth as
the key indicators to measure the scalability of FedDNN
training.

Specifically, the first key indicator of scalability is the
time consumption in Table 5, where we record the aver-
age time consumption of multiple times training processes
(×10). The records show that the training time increased by
the same proportion with the growth of the sample size.
For the system-wise utilization of the computing node from
the Advertiser and Ads Publisher sides, we summarize the
performances in Fig. 6. We can observe that the utilization of
CPU has a relatively stable curve (slightly increases) when

7. The setting follows the real pattern of data from the Advertiser and
Ads Publisher sides in Case 3.

TABLE 5: Data Sets for FedDNN Training.

Data Sets (M = million, m = megabyte)

Name Samples Total Dimensions Storage Time Cost

a9a-ex1 0.5 M 123 = (103 + 20) 123.0 m 10310s

a9a-ex2 1.0 M 123 = (103 + 20) 246.3 m 20010s

a9a-ex3 2.0 M 123 = (103 + 20) 492.6 m 40481s

the size of the data sample increases from 0.5 million to 2
million, while the peak value increases especially from Ads
Publisher side. And we also spot a significant usage gap
between the Advertiser and Ads Publisher side, where the
average/peak CPU utilization from Ads Publisher side is
nearly twice higher than the Advertiser side. This result is
reasonable that the Interactive and Top models are located
in Ads Publisher side and need more computation resources
accordingly. A similar result can be found in Fig. 6(c) and
(d), where the memory usage from Ads Publisher side is
greater than the Advertiser side and the overall trends
for both sides increase when the sample size grows. For
the network traffics between the Advertiser side and Ads
Publisher side, we record the sending and receiving band-
widths along the training process. As the results are shown
in Fig. 6(e)-(h), the bandwidths overall increase with the
growth of the training samples, where the average/peak
sending/receiving bandwidths of Ads Publisher side are
higher than the Advertiser side in general. It makes sense
that the data sample engaged from Ads Publisher side has
a higher dimension than the sample from the Advertiser
side (i.e., 103 > 20), which leads to a slightly heavier
network traffic jam. Note that there exists an abnormal peak
receiving bandwidth value (extremely large value compared
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to the value in 0.5 million and 1 million settings) when
the training sample size is 2 million since the testing en-
vironments confront unexpected network turbulence which
could be mitigated by further anti-jam design [30], [31] of
the network.

6 RELATED WORKS AND DISCUSSION

6.1 Online Advertising

To make profit from content publishing, many works have
been studied to feed users with Ads in contents [32], [33],
[34], [35], [4]. While the overall goal of these studies is to
maximize profits of Ads through distributing the contents
with high Click-Through Rates (CTR) [36], the proposed
algorithms aim at predicting CTR from different perspec-
tives. The personalized Ads approaches intend to predict
CTR from a personalization perspective [32], [33], [35], [37],
where the algorithms screen the profiles of massive users
and extract their interests for CTR prediction through ma-
chine learning. Some algorithms even detect the subgroups
with special interests [32] and predict CTR accordingly.
Yet another line of efforts [38], [34], [39] is to match Ads
and users’ queries in a search engine’s setting, where more
business performance metrics such as Conversion, Conver-
sion rate (CVR), and Cost per Action (CPA) have been
concerned [40], [41], [42] in recent works.

6.2 FL and PETs for Online Advertising

Recent works [43], [44], [45], [46] have been proposed to
mitigate the privacy issues in online advertising through
federated learning. For example, [43] establishes a feder-
ated identity management system for privacy-preserving
targeted mobile advertising, where the system contains a
complex integration of pseudonyms, cryptography, secure
messaging, strong authentication to secure the data com-
munication during the advertising. Another group of re-
searchers from Google showcases a privacy-enhanced solu-
tion [44] for interest-based online advertising, giving details
on implementing Chrome’s Federated learning of Cohorts
(FLoC) API.

6.3 Discussion

Though the above works are delegated to protect online
advertising with FL and PETs, all these efforts intend to
secure users’ data (at client/browser sides) from the po-
tential abuse of Ads publishers, Advertisers or third-party
phishing websites [47]. Compared to these works, Feyn-
man focuses on securing the data collaboration between
advertisers and Ads publishers. More specifically, Feynman
proposes to use FL techniques to jointly train a model using
information from both sides while avoiding the exchange of
raw data.

As previously mentioned, Feynman can function as a
component not only within Baidu’s Ads, Search, and Feeds
systems, but also as a support for other recommendation
systems with specific adaptations. To the best of our knowl-
edge, Feynman is the first framework to employ federated
learning-based advertising in such contexts and demon-
strates promising potential for application in other cases

with high feasibility. The proposed Feynman offers a compre-
hensive pipeline to establish the service, processing recom-
mendations in three stages: 1) Private Set Intersection (PSI)-
based user targeting, 2) Federated Deep Neural Network
(FedDNN)-based Click-Through Rate (CTR) prediction, and
3) Ads systems for delivering the final advertising con-
tent. Furthermore, we detail the implementation of Feynman
within the platform and its domain-specific language (DSL).
It is important to note that Feynman can be considered a
novel paradigm, originating from but not limited to Baidu’s
advertising system. As a general federated learning-based
recommender framework, Feynman exhibits significant po-
tential in the contemporary service computing domain. This
is because it takes into account the security and privacy of
users’ data on web services and strengthens the connection
between business services (such as advertising tasks) and
artificial intelligence services (such as CTR prediction).
Open Issues. We discuss some open issues related to the
design and the implementation of Feynman in real-world
applications.

• federated learning-based advertising - In the design of
Feynman, some federated learning (FL) and privacy-
enhancement techniques (PETs) have been used. While
the goals of FL and PETs are primarily at securing the
individual users’ privacy, our work further emphasizes
the business interests in data security from Ads publish-
ers and advertisers’ sides—i.e., improving the efficiency
and effectiveness of advertising while avoiding raw
data sharing. Especially, they do not want each other to
know their own user populations. The use of private set
intersection (PSI) techniques well cover this issue under
a business contract, including details of data protection
and communication policies that both sides agreed.

• Integration with Baidu Ads, Search and Feeds - Feynman
has been deployed into Baidu Ads System as a compo-
nent to serve the mobile Apps recommendation. The
Ads may display at the results of search queries or
subscription of feeds. Note that the overall decision
making procedure to match and display an Ad in the
search results or the subscription of feeds is compli-
cated, the CTR prediction of Feynman only provides
parts of recommendation indicators. Please check Baidu
MOBIUS system [4] and AI Ads System [2] for details.

• BFC Platform and Open-Source Implementations - Feynman
was implemented using Baidu Federated Computing
(BFC) Platform8, including PSI-based User Screening
and FedDNN-based CTR prediction. An open-source
implementation of FedDNN is provided as PaddleFL9

from Baidu’s open-source federated learning platform
– PaddleFL. Readers are encouraged to use PaddleFL
for their applications to federated learning.

• Usability - As a commercial company, it is difficult
to direct measure the usability from users but possi-
bly estimate from the variance on non-targeting user
hit rate. Specifically, in Section 4.3.2, we include two
special metrics – NTHR-A and NTHR-P representing
the proportion of Click-throughs made by non-target

8. https://bfc.baidu.com/
9. https://github.com/PaddlePaddle/PaddleFL/tree/master/

python/paddle_fl/split_learning
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Fig. 6: Scalability Analysis on the Training Process of FedDNN in Feynman (We profiled performance at both the Advertiser
and Ads Publisher/Baidu’s sides and report them separately, as more efforts are required at the Ads Publisher/Baidu’s
side).

users/customers based on statistical analysis from the
Advertiser side and Ads Publisher side. The dropping
of these two values in Case 2 indicates that the rec-
ommendation tends to be more precise than the plan
without Feynman since the Ads are less likely to be
distribute to non-targeting users/customers benefited
from the user post-screening by the PSI component in
Feynman. Such performance gain might be regarded as
an implicit signal that the user experience (recommen-
dation in needed) is promoted.

• Technical Advantages and Practices - In this work, rather
than proposing new techniques for federated learn-
ing, we comprehensively present the industry prac-
tices in using federated computing for advertising.
The overall goal of Feynman is to improve advertis-
ing while securing the data from both Advertiser and
Ads Publisher/Baidu’s sides under business contracts.
Our attempts to secure these data (especially the user
populations and features about in-app purchases of a
mobile App) are well-motivated in real-world business.
In future work, we hope to study novel techniques to
further improve user privacy and data security.

7 CONCLUSION

In this paper, we propose Feynman that has been deployed
in Baidu, to improve conversions of online advertising in a
federated manner. The goal of Feynman is to improve the RoI
(through CTR, CVR, and CPA) of mobile app recommenda-
tion from an ecosystems’ perspective, i.e., per investment in
advertising an app (Goal. 1) increasing the number of new
installations/users of the app, and then (Goal. 2) increasing
the number of new active users (preferably with frequent in-
app purchase activities). Incorporating with BFC platform,
Feynman leverages users’ records stored in advertisers to re-
fine the pool of target users for Ads distribution, and jointly

builds the predictive models for users’ purchase activities
forecasting using features from Baidu and the advertiser.
With refined target pools and more accurate models, Feyn-
man has successfully helped several top apps in China to
further enlarge their user populations and revenues from
in-app purchases, where Feynman achieves increase of CTR
around 20% ∼ 79%, increase of CVR around 25% ∼ 100%,
and decrease of CPA around 3% ∼ 56% in our reported
three real cases. Also, we performed scalability analysis
on Feynman with large-scale data sets of various sizes and
demonstrate the capacity of Feynman to train models on
web-scale traffics. It is worth mentioning that rather than
come up with new techniques for federated learning or
recommendation algorithms, we comprehensively present
the industry practices in using federated computing for
advertising and dedicate to showing the promising research
direction in service computing domain.

Though we only evaluate the performance of Feynman
for mobile Apps advertising in A/B Test with Baidu Ads
System based on real-world traffics and have not gotten
a chance to compare Feynman with other advertising sys-
tems, Baidu Ads System actually is a strong baseline for
performance comparisons. Readers are encouraged to refer
to MOBIUS [4] and AIAds [2] for details of Baidu Ads.
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