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Abstract—Mobile sensing systems have been widely used as
a practical approach to collect behavioral and health-related
information from individuals and to provide timely interven-
tion to promote health and well being, such as mental health
and chronic care. As the objectives of mobile sensing could be
either personalized medicine for individuals or public health for
populations, in this work, we review the design of these mobile
sensing systems, and propose to categorize the design of these
systems in two paradigms—1) personal sensing and 2) crowdsens-
ing paradigms. While both sensing paradigms might incorporate
common ubiquitous sensing technologies, such as wearable sen-
sors, mobility monitoring, mobile data offloading, and cloud-based
data analytics to collect and process sensing data from indi-
viduals, we present two novel taxonomy systems based on the:
1) sensing objectives (e.g., goals of mobile health (mHealth) sens-
ing systems and how technologies achieve the goals) and 2) the
sensing systems design and implementation (D&I) (e.g., designs
of mHealth sensing systems and how technologies are imple-
mented). With respect to the two paradigms and two taxonomy
systems, this work systematically reviews this field. Specifically,
we first present technical reviews on the mHealth sensing systems
in eight common/popular healthcare issues, ranging from depres-
sion and anxiety to COVID-19. By summarizing the mHealth
sensing systems, we comprehensively survey the research works
using the two taxonomy systems, where we systematically review
the sensing objectives and sensing systems D&I while mapping the
related research works onto the life-cycles of mHealth Sensing,
i.e.: 1) sensing task creation and participation; 2) (health surveil-
lance and data collection; and 3) data analysis and knowledge
discovery. In addition to summarization, the proposed taxonomy
systems also help the potential directions of mobile sensing for
health from both personalized medicine and population health
perspectives. Finally, we attempt to test and discuss the validity
of our scientific approaches to the survey.
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I. INTRODUCTION

MOBILE sensing [1] refers to a sensing paradigm that
leverages the ubiquitous sensors embedded in mobile

devices (e.g., mobile phones and smartwatches) to monitor
human behavior, physiology, environment, and interactions
between them in a human-centric manner [2], [3]. Lots
of work studied the adoption of mobile sensing techniques
in health domains [4]–[6], such as mental health [7] and
chronic care [8]. Early visionary works [9], [10] proposed
the basic framework of the mobile health (mHealth) sens-
ing techniques that leverage “noninvasive” mobile sensing
schemes [11] to collect data for human activities recogni-
tion and infer the individual’s health status using machine
learning algorithms with longitude and real-time sensory data
accordingly [7], [12]–[14].

Compared to traditional medical sensors that are frequently
operated by health professionals to collect data from patients
in a clinical context, mHealth sensing relies on participation
of voluntary users to obtain information for health-related
well-beings in their daily life [15]–[17]. Furthermore, the
goal of mHealth sensing research is to study the innovative
applications of mobile sensing techniques to collect behav-
ioral and physiological data related to health and well being,
while medical sensing aims at designing new measurement and
instrument techniques for medical purposes [18]. More com-
parison between mHealth sensing and medical sensing could
be found in Appendix A. In this work, given the rapid devel-
opment in such areas, we propose to review and survey the
recent progress in mHealth sensing techniques.

A. Health Outcomes in mHealth Sensing Systems

There are several works reviewing and surveying the
research problems [19]–[23], emerging techniques [24], [25],
system design [26]–[28], and prototyping tools [14], [29], [30]
for mHealth sensing systems. In this work, we propose to first
categorize the research works on mHealth sensing systems
with respect to the major health issues they are addressing
(e.g., depression and anxiety). Furthermore, for every major
health issue reviewed here, we also discuss mHealth sens-
ing research from the perspectives of personalized medicine
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and population health—two major health outcomes of modern
healthcare [31]–[34], which are defined as follows.

1) Personalized Medicine: Personalized medicine focuses
on individual patients–with medical decisions, practices,
interventions, and/or products being tailored to the indi-
vidual patient based on their predicted response or risk
of disease [35]. Thus, the goal of personalized medicine
is to improve and optimize the individual treatment
effects through sensing, monitoring, and predicting their
health status [36].

2) Population Health: Population health is defined as
the health outcomes [37] of a group of individuals,
including the distribution of such outcomes within the
group [38]. The goal of population health is to pro-
mote the health of a target population [39], where the
approaches include discovering health outcomes, under-
standing patterns of health determinants, and policy
making for interventions.

Though the outcomes of personalized medicine and population
health promote the well being of individuals and communities
in diversified directions, they often incorporate some ubiqui-
tous sensing technologies, such as personal health surveillance
with wearable sensors [40], mobility monitoring [41], [42],
mobile data offloading, and cloud-based data analytics [43] to
collect and process sensing data from individuals. In practice,
personalized medicine mainly aims to continuously monitor
the health conditions and medical progressions of individ-
ual users with fine-grained data collection, while population
health is focused broadly and comprehensively on studying
the health issues and their determinants in a community with
a considerable scale. Thus, there is a significant need to survey
mHealth sensing systems and techniques designed and imple-
mented from the perspectives of personalized medicine and
population health.

B. Challenges of Design and Implementation (D&I) in
mHealth Sensing Systems

For the two health outcomes of mHealth Sensing, we plan
to generalize and categorize existing works into two design
paradigms—1) personal sensing (PS) and 2) crowdsensing
(CS) paradigms, according to the significant differences in
app design, such as user engagement strategies [44], [45] and
data analysis approaches [46], [47]. Moreover, as shown in
Fig. 1, we follow the common frameworks of mobile sens-
ing systems [1], [48] and propose to modularize the design
of mHealth sensing systems [49] for both PS and CS into a
three-stage pipeline as follows.

1) Sensing Task Creation and Participation: With a pool of
potential mobile users, the mHealth Sensing researchers
create tasks for specific health issues via deployed
systems [4], [50], [51], then prompt users’ participa-
tion [10], [52], [53] and the engagement with incen-
tives [54], [55].

2) Health Surveillance and Data Collection: With actively
engaged participants, the mHealth sensing systems
collect health-related data from participants in their
daily life scenarios [11], [56], and then store and

Fig. 1. Three-stage pipeline of mHealth sensing systems.

offload the sensing data often with security and privacy
protection [57]–[60].

3) Data Analysis and Knowledge Discovery: With health-
related data collected, the mHealth sensing systems
carry out data processing and analysis under ethical
certification [61]–[63] to predict health-related events
for individuals [64], [65] and discover determinants of
health [38], i.e., knowledge about population health and
well being [10], [66].

Based on the above two mHealth sensing design paradigms
and the pipeline of three stages, it is reasonable to assume the
way that existing works designed and implemented mHealth
sensing systems, kept participants engaged, and discovered
knowledge might be significantly different from the perspectives
of personalized medicine and population health. In this article,
we provide two taxonomy systems that cover the major tech-
nical challenges and methodologies in this area. Specifically,
we focus on the sensing objectives (e.g., data privacy, data
quality, energy efficiency, and other goals targeted at enabling
practical mHealth Sensing systems) and sensing systems design
and implementation (D&I) (e.g., designs of mHealth Sensing
systems and implementations of technologies), respectively.
Furthermore, we review and categorize the sensing objectives
and systems D&I issues by the combination of two mHealth
Sensing design paradigms and three stages in detail.

C. Organization of the Survey

The remainder of this manuscript is organized as follows.
1) In Section II, we review and summarize mHealth sens-

ing systems for eight common/popular health issues.
Specifically, we discuss how mHealth sensing techniques
study the health issues for personalized medicine and
population health purposes with case studies. We report
the procedure to select the health issues for the review
in Appendix B.

2) In Section III, we introduce the taxonomy system classi-
fying mHealth sensing systems from the sensing objec-
tives perspective. Specifically, we identify and discuss
the detailed objectives considered to achieve personal-
ized medicine and population health goals, as well as
their differences and connections, in each step of the
mHealth sensing life cycle.
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3) In Section IV, we present the taxonomy system from
the perspective of sensing systems D&I, where we dis-
cuss, with respect to identified objectives, how mHealth
sensing systems are designed and how technologies are
implemented to handle the PS for personalized medicine
or CS for population health.

4) In Sections V and VI, we discuss the future direc-
tions in mHealth sensing area and conclude the article.
Specifically, we discuss the limitations of this survey,
including the use of scientific approaches and the cov-
erage of topics. In Appendix C, we review and discuss
the scientific approaches to this survey in detail.

II. REVIEWING MHEALTH SENSING SYSTEMS FOR

COMMON HEALTH ISSUES

In this section, we first list the definitions of health-related
terms in Table I. With respect to the eight most commonly
researched health issues (i.e., depression and anxiety, sleep
quality and insomnia, diabetes, heart diseases, elder care, diet
management, tinnitus, and COVID-19) in reviewed papers,
we summarize typical mHealth sensing apps for personalized
medicine and population health.

In general, as shown in Table II, to promote personal-
ized medicine, mHealth sensing systems leverage PS paradigm
and focus on an individual’s health outcomes with systems
D&I of health status monitoring, recognition, and interven-
tion; while for population health, the CS paradigm mainly
aims to measure/understand population health status and dis-
cover knowledge for public health benefit. Here, we discuss
three typical health issues among the eight with respect to the
outcomes of mHealth Sensing.

A. Depression and Anxiety

Depression and anxiety are mental health disorders
broadly experienced by 548 million people worldwide [136].
mHealth sensing gives ubiquitous solutions to these issues,
both on monitoring and intervention at the personal
level [51], [83], [85] and surveying and understanding at the
population level [88].

1) Personal Depression and Anxiety Monitoring and
Intervention: Mobile devices are providing broad services for
individual patients with mental disorders, as they can continu-
ously collect behavior and physiology data, as well as deliver
timely interventions without scarce clinical resources [25].
Typically, Mobilyze! [84], a mobile mental intervention appli-
cation with a two-step framework—context sensing and eco-
logical momentary intervention—collects contextual data and
feeds them into a medical diagnosis model, then it infers the
user’s mental health status and provides interventions to over-
come psychological dilemmas (e.g., lack of social interaction).
Furthermore, in the mental health domain, advances in artifi-
cial intelligence are promoting decision making of just-in-time
adaptive intervention (JITAI) by learning from individual
longitudinal behaviors [137], [138].

2) Population Depression and Anxiety Survey: Mobile
sensing techniques are increasingly being adopted for pop-
ulation depression and anxiety surveys, as they provide a

TABLE I
TERMS AND DEFINITIONS

low cost and off-the-shelf, cheap, and online data collec-
tion manner versus laborious and high-cost clinical testing
and questionnaires. For example, by studying the correla-
tion between anxiety and behavioral indicators (e.g., activity
locations, text messages, and calls) of 54 students over two
weeks, Boukhechba et al. [87] proposed to pervasively mon-
itor college students’ mental status by tracking their GPS
trajectories.

3) Population Mental Health Determinants Understanding:
New findings for population mental health determinants can
be gained by widely collecting and comparatively analyz-
ing data among populations [89], [139]. For example, a
mobile CS (MCS) platform—Sensus [4] was leveraged by
Chow et al. [86] to verify clinical models of depression and
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TABLE II
SUMMARY TABLE OF THE MHEALTH APPS ON EIGHT COMMON HEALTH ISSUES CREATED FOR THE MOTIVATIONS IN: 1) PERSONALIZED

MEDICINE AND 2) POPULATION HEALTH, RESPECTIVELY

anxiety. Taking the levels of depression and social anxiety
as moderators, researchers tested the relations between state
effect and time spent at home of 72 recruited students, and
finally, they gain an understanding of the significant correla-
tions between depression and anxiety and home-stay behaviors
in the target population.

B. Sleep Quality and Insomnia

mHealth Sensing applications are widely applied to moni-
tor sleep quality and identify sleep stage, as well help with
understanding sleep problems in populations.

1) Personalized Sleep Monitoring and Insomnia Assistance:
Mobile and pervasive sensing devices are providing more per-
sonalized sleep quality monitoring and sleep-aid service [12],
[92], [140]. Sorts of sleep monitoring systems are embedded
in wearable devices, but they are not widely used and uncom-
fortable to wear [141], [142]. mHealth sensing solutions are
to use off-the-shelf sensors built in mobile phones, such as
microphones, to detect sleep stage and infer sleep quality. For
example, Hao et al. [50] proposed a model leveraging audio to
detect sleep events such as body movement for sleep quality
estimation [92]. Furthermore, with off-the-shelf smartphones
and commodity WiFi devices, Yu et al. [93] designed a low-
cost sleep stage monitoring system by extracting respiratory
rate and body movement from channel state information from
WiFi antennas.

2) Population Sleep Science Research: CS methods are
widely used to create population sleep status data sets for
sleep research, such as understanding psychological and phys-
iological causes of insomnia. In practice, to understand
the relationship between phone usage and sleep quality,
Sharmila et al. [94] collected a large-scale phone usage data
set and sleep questionnaires from 743 participants in a CS
manner and evaluate the effect of mobile phone usage
patterns on sleep with statistical methods. During the pan-
demic, Tahara et al. [95] studied the changes of mHealth app

users’ sleep phase and revealed the impact of the pandemic on
delayed sleep onset and offset with increased sleep duration
and decreased social jetlag, especially for young populations
in Japan.

C. Mobile Sensing in the COVID-19 Era

Mobile devices that people carry around are like the “wit-
nesses” to the spread of the pandemic, continuously and pas-
sively collecting human mobility and social interactions [143].

1) Personal Remote Detection: Mobile microphones collect
audio data, including sigh, breath, and voice, which are indi-
cators to diagnose lung diseases [144], giving great potential
of automatic COVID-19 remote detection [118]. For example,
Brown et al. [119] proposed methodologies to detect diag-
nostic signs of COVID-19 from voice and coughs, which
well differentiated COVID-19 from other viral infections.
Han et al. proposed to diagnose COVID-19 infections by
learning from the cough, breathing, and voice data collected
by COVID-19 Sounds App leveraging a three-channel neural
network. In addition to audio-based methods, novel wearable
sensors also provided long-term monitoring for vital but tiny
signs that may indicate infections to assist diagnosis [121].

2) Personal Contact Tracing: The most common way
of transmission of the COVID-19 virus is through contact
between people [145], which causes finding the contacts of
positive patients an essential task for epidemic control. Many
mobile apps were developed and deployed for the privacy-
preserving contact tracing during the pandemic, automatically
and securely recording and communicating the contact his-
tory, where the most crucial technology is the Bluetooth
proximity network [125], [126], [128], [146]. For example,
Carli et al. [127] developed WeTrace, a mobile virus tracing
app that detects one’s contact history with others by iden-
tifying Bluetooth signal interactions; and proposed a trusted
information transmission framework for the tradeoff between
public health benefits and privacy leakage.
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Fig. 2. Taxonomy system I—sensing objectives.

3) Population Epidemiological Analysis: The recently
revealed significant correlations between regional human
mobility and COVID-19 infections provide guidance on
investigating and understanding the pandemic spread with
multiscale mobile data [123], [124]. Human mobility data
(e.g., cell tower records, GPS location, Bluetooth proximity,
and opt-in application data) on multiple scales are guiding
the COVID-19 epidemiological studies [122]. To be specific,
from the perspective of human movement, cell tower records
and GPS location data of mobile phones help describe the
human flow from origins to destinations of multilevel spatial
scales (e.g., city, state, and country) [42], [147]; in terms of
human interaction, GPS location data and Bluetooth proximity
data could measure population density to estimate the exposure
risk [148].

4) Public Policy Making and Evaluation: Public policies
(e.g., travel restriction, quarantine, and social distancing) were
commonly proposed by governments around the world to
limit the fast spread of COVID-19. mHealth sensing data
among populations were effectively applied in policy making
and evaluation processes [149], [150]. For instance, mobile
data broadly sensed from a large group, such as app usage
logs and Bluetooth encounters, helped estimate the public
response to specific events (e.g., social distance ban published)
and evaluate the efficiency of social distancing [129], [151].
Furthermore, with the mobile sensing data gathered publicly,
statistical and machine learning methods can be used to esti-
mate, simulate, and predict the policy effects on spread control
in a data-driven manner [131], [132], [152].

D. Discussion

Note that in this work, we review and summarize the
works on mHealth sensing systems deployed over smartphones
and commodity devices, such as tablets, smartwatches, and
other wearable consumer electronics in noninvasive sensing
manners. Many other works intending to monitor the physio-
logical status of patients for medical purposes or professional

devices/systems for critical cares/assisted living, such as dedi-
cated medical sensors [153]–[156], Internet of Medical Things
(Medical IoTs) and Medical Cyber–Physical Systems (Medical
CPSs) [157]–[174], and medical robots [175]–[178], are not
included here. Of course, many behavior-related health issues
are not well covered in this work, such as drug/alcohol abuse
or addiction [179], [180].

What is more, there are also sort of pervasive IoT
devices (e.g., WiFi, LoRa, and RFID) studied to serve as
mHealth sensing tools, typically applied in motion track-
ing [181]–[183], activity/gesture recognition [184]–[186], and
respiration monitoring [187]–[190] tasks. The basic idea of
these ubiquitous sensing practices is to mine the wireless sig-
nals of IoT devices (such as the channel state information of
WiFi) for information that expresses physiology and behav-
ior [191]. For instance, the Fresnel diffraction model was
leveraged by Zhang et al. [192] to reveal the quantified rela-
tionship between channel state diffraction gain and human
subtle displacement/movement.

III. TAXONOMY SYSTEM I (CLASSIFICATION OF MHEALTH

SENSING BY SENSING OBJECTIVES)

In taxonomy system I, for each step of mHealth sensing life
cycles, we identify and discuss the mHealth sensing systems
on: 1) personalized medicine and 2) population health, as
shown in Fig. 2.

A. Objectives in Sensing Task Creation and Participation

In order to attract enough participants in mHealth Sensing
practices, the main objective in this step is to provide proper
health service and/or recruitment to collect sufficient data.

1) Service Provision for Personalized Medicine
Seekers: mHealth sensing systems for personal-
ized medicine usually provide helpful healthcare
services [17], [193], [194] such as health status mon-
itoring and personalized interventions or treatments.
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In most cases of the personalized medicine systems,
participants actively engage in the sensing task for
personalized medicine outcomes [195]. Thus, the
detail objective of personalized medicine systems in
this step is to provide exact healthcare services (e.g.,
exercise reminders and user-friendly interface) and keep
improving service quality (e.g., optimizing intervention
accuracy and timing via advanced algorithms) to scale
up the participation [196].

2) Recruitment Provision for Population Health
Participants: Population health systems are mostly for
studying population health issues leveraging massive
collected data from groups with less straightforward
personal health benefit for participants to compensate
for their concerns on cost and privacy (e.g., time
consumption, privacy exposure risk [197], and battery
usage [198]) . For example, in a COVID-19 infectious
population screening [199] or a rare clinical disease
causes understanding program [200], the results are
valuable for public health researchers but relatively
useless for participants. The above reasons lead to a
unique detail objective of population health systems
in attracting participation—providing recruitment to
gather participants and motivating their performance
with incentives [55], [201].

B. Objectives in Health Surveillance and Data Collection

With exact sensing tasks and a pool of participants, the
objectives in Health Surveillance and Data Collection are
collecting and gathering sufficient trustworthy data for fur-
ther analysis. As show in Fig. 3, we summarize that the data
trustworthiness lies in data quality and data quantity; further,
the data quality could be further indicated as data precision
and data fidelity, and the data quantity could be measured by
longitudinal coverage and population coverage. Also, some
objectives (i.e., privacy and security and resources consump-
tion) are commonly expected by the two kinds of mHealth
sensing systems.

1) Personal Sensing for Personalized Medicine: In person-
alized medicine systems, the detail objectives in data collection
are data precision and longitudinal coverage.

1) Data Precision: The data precision is the most straight-
forward objective for personalized medicine goals,
which determines the quality of personal health-
care services. Here, we take the mobile medical
devices in the intensive care unit (ICU) as exam-
ples of the data precision objective in personalized
medicine [202], [203]. Wearable devices with incen-
tive monitoring sensors collecting patients’ physiology
and behavior in ICU are typical schemes for personal-
ized medicine outcomes with high sampling rate and
precision. They finely capture patients’ physical and
behavioral biomarkers, such as facial expressions, func-
tional status entailing extremity movements, and severe
progression indicators [204].

2) Longitudinal Coverage: The coverage of longitudi-
nal data (in observations and objects) helps not only

accurately capture complex dynamics of individual indi-
cators in the long term [14], [205]–[207] but also
comprehensively analyze the nontrivial casual relation-
ships between multiple pathogenic determinants and
health outcomes [208]–[210]. In addition, the interac-
tions between mHealth Sensing systems are also ben-
eficial to enlarge the longitudinal coverage of sensing
in individuals, which share and gather multiple observa-
tions. For instance, Google Health and HealthVault are
cross-platform health record systems storing and shar-
ing information between mHealth systems in a secure
manner, which enlarge the personalized medicine power
of single systems [211].

2) Crowdsensing for Population Health: To achieve popu-
lation health goals, the task of Health Surveillance and Data
Collection is to build a large-scale and error-free data pool
correlated to the health issues to be analyzed, with detail
objectives of ensuring data fidelity and enlarging population
coverage in the sensing process.

1) Data Fidelity: Versus data precision, data fidelity in
the mHealth sensing systems refers to there is no
human error (e.g., intentional cheating) in gathered
data [40], [212]. Especially, different from the collec-
tion of some simple data (e.g., traffic speed data or urban
temperature data), collecting daily/clinical health-related
data requires enormous manpower, incentive cost, and
devices resources for a long time [213], [214]. Also,
once human errors are introduced into the gathered data,
it leads to inaccurate health modeling, inaccurate pro-
gression measurement, and wrong medical conclusions,
which are harmful to the population health goals [215].

2) Population Coverage: Enlarging the population cov-
erage of health surveillance and data collection is
beneficial to obtain comprehensive and effective data
analysis and knowledge discovery [216]. For varied
research purposes, the expectations of population cover-
age vary [41]. For example, data for population mental
health research should cover balanced genders and diver-
sified ages for comparative analysis and knowledge
discovery with no/limited prior knowledge leveraging
machine learning [217] or statistical inference [218]
approaches; data for sleep science research should cover
kinds of patient groups, such as sleep apnea, insomnia,
Parkinson’s disease, and periodic limb movement disor-
der (PLMD), as well as healthy people as the control
group.

Though the detail sensing objectives of personalized medicine
and population health practices in data collection processes
are specified as the above perspectives, they are usually
overlapped. For example, data precision and longitudinal cov-
erage are also desirable in CS for population health systems.
However, data fidelity and population coverage are more in
need of dedicated systems D&I issues for specific problems
in population health practices.

3) Commonly Existing Objectives—Concerns and Costs:
Beyond the technical objectives in trustworthiness of data,
issues about users’ practical concerns and costs are the
commonly existing objectives for mHealth sensing systems.
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Fig. 3. Detail sensing objectives in health surveillance and data collection.

1) Security and Privacy: Issues in security and privacy are
great concerns in health-related domains [57], [146]. As
for personalized medicine systems, the security/privacy
issues include identity privacy [219] (participants do
not want to expose personal information), data pri-
vacy [220] (health-related data is sensitive), and attribute
privacy [221] (for attributes, such as locations and
trajectories). Besides, the risk of privacy leakage in
population health systems is greater [222], [223], as
it requires regular sensitive health-related data upload-
ing and offloading between mobile devices and cloud
servers via networks [224]. To be specific, additional pri-
vacy concerns in population health data collecting and
uploading processes are task privacy [225] (the sensing
tasks may correlate to participants’ illnesses) and decen-
tralized privacy [226] (frequent communication with a
central server could be more easily hacked).

2) Resources Consumption: Keeping mobile sensing data
sampling consumes considerable battery, hardware, and
software resources. From the personalized medicine per-
spective, the resource consumption is more intense,
as the data collection actions are generally contin-
uous and intensive [227]. Against this background,
the type and combination of sensors working and
their sampling rate, data accuracy, and sampling abun-
dance are under consideration [228], [229]. In terms of
population health, when the hardware consumption of
each individual’s perception is already economical, the
decrease in resources consumption is mainly achieved
by optimizing the task allocation in spatial, temporal,
participants, and content to achieve cost-effective global
sensing [66], [230]–[233].

Worth mentioning, to obtain fine-grained sensing data with
wide coverage (in terms of either surveillance time or the num-
ber of human subjects), it is frequently needed to intensively
and continuously collect data from wide range of participat-
ing individuals, thus violating participants’ privacy controls
or data/battery plans. Hence, mHealth sensing systmes need
to grant every individual participant the right to make trade-
off between data trustworthiness and costs and concerns as
shown in Fig. 3. Ideally, the mHealth sensing systems need
to prove themselves have already minimized data access priv-
ileges subject to the actual needs, to persuade and encourage
participants to involve in the CS for public health.

C. Objectives in Data Analysis and Knowledge Discovery

After gathering expected data, the main objective in data
analysis and knowledge discovery is to discover health-related

Fig. 4. Comparison of main objectives of data analysis and knowledge
discovery in the systems for personalized medicine and population health.

knowledge about individuals and populations from data, and
proper healthcare actions [234], [235].

Systems for personalized medicine usually recognize [236]
or predict [237], [238] the individual user’s health status
by integrating his/her historical, as well as physical and
environmental data surrounding a specific health issue to
accurately recognize/predict health risks and provide precise
healthcare interventions at the right time, as shown in
Fig. 4.

1) mHealth Accuracy in Risk Prediction: Effective person-
alized healthcare services rely on the accuracy of health
status modeling and progression prediction. Sufficient
multimodal data collected in user daily, such as medicine
history, physical biomarkers (e.g., heart rate), and envi-
ronmental biomarkers (e.g., locations), provides great
information for accurately modeling and predicting one’s
health outcomes and progressions via machine learning
approaches [239]–[241]. For example, by passively mon-
itoring schizophrenia patients’ psychiatric symptoms
represented by surveys and behavioral/contextual char-
acteristics (e.g., physical activity, conversation, mobility)
over months, Wang et al. [242] proposed a prediction
system which predicts psychiatric symptoms’ dynamics
and progression merely based on mHealth Sensing data
without traditional self-reported ecological momentary
assessment (EMA).

2) mHealth Precision in Predictive Intervention: A typical
detail objective in this step for the personalized medicine
systems is to provide predictive interventions with high
mHealth precision responding to recognized/predicted
health outcomes and progressions (e.g., increasing
depression and anxiety and exposed to high heart risk).
Specifically, the precision above lies on precise interven-
tion timing, measures, and intensity, which leads to just-
in-time and adaptive mHealth supports [17], [243]. For
example, Costa et al. [244] proposed to improve one’s
cognitive performance by unobtrusively regulating emo-
tions with smartwatch notifications in varying detected
heart rates. Lei et al. [245], by formulating the interven-
tion tasks in real-time as a contextual bandit problem,
provided an online actor–critic algorithm to guide JITAI
practices.
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1) Crowdsensing for Population Health: CS practices
investigate population health issues by comprehensively min-
ing massive health-related data among researched groups, such
as monitoring and screening the population health status in a
region in both depth and coverage [241], [246], and verifying
and inferring [94] the determinants of specific diseases via
powerful statistics-based approaches.

1) Depth and Coverage of Population Health Monitoring in
Communities: For population health systems (especially
for population health monitoring, screening, and survey-
ing), in terms of data analysis, it is meaningful to deeply
mine and widely enlarge the information of targeting
communities leveraging collected CS data. For example,
in many mHealth CS practices, some specific character-
istics of health problems (e.g., the contact infection of
infectious diseases [247], familial heredity phenomenon
of genetic diseases [248], and regional relevance of con-
ventional health habits [249]) give great possibility to
finish a mobile population health screening of the whole
community by only investigating a subset of this group,
which is a manner with accuracy guarantee and lower
cost.

2) Statistical Power of mHealth Approaches in Knowledge
Discovery: The statistical power of the mHealth
approaches is a key pursuit for knowledge discovery
in large-scale population data. Specifically, in mHealth
field, CS is being used as a useful tool to collect and
analyze massive population health-related data to obtain
medical knowledge, where new knowledge can be sum-
marized or inferred by statistical methods for a better
understanding of health determinants [73], such as stay-
ing home too long causes mental health problems [87],
and lacking exercise would increase the risk of heart
attack [102]. For example, Zhang et al. [41] revealed
how large-scale human mobility affects one’s health
conditions leveraging the statistical approach (i.e., addi-
tive explanation value analysis), which shed light on
understanding population health from the perspective of
human mobility.

2) Commonly Existing Objectives—Risks and Ethical
Issues: In both mHealth-based personalized medicine and
population health knowledge discovery practices, some risks
and ethical issues cannot be ignored in sensing objectives.

1) Risks and Ethical Issues: Risks and ethical issues are
crucial in human-subject mHealth research, since per-
sonally identifiable health-related data of users would
be collected, uploaded, and analyzed, as well as sen-
sitive scientific study results would be made public to
varying degrees, even if some certifications are issued
by the developers [250], [251]. For instance, funded
by advertisers, such as insurance companies, the devel-
oper may exposure information to them; some patients
and victims may be forced to pay more or even fail
to apply, which goes against ethics [252]. Besides
revealing private health information, common risks and
ethical issues in mHealth sensing systems include data
loss, theft and hack [253], excessive or unauthorized
collection of data [254], loose medical conclusions,

Fig. 5. Relationship between the objectives of PS and CS paradigms.

and negative impact [255], [256]. Besides, the scien-
tific studies carried out with mHealth Sensing systems
may be not statistically solid enough, since most of
the obtained conclusions are based on limited obser-
vation samples and periods; for example, few studies
have conducted follow-up studies on large-scale popula-
tions for more than a few months, and exact long-term
impact of mHealth Sensing systems on personal and
population health is still not scientifically clarified [257].
Against this background, appropriate analysis of poten-
tial risks [256], ethical issues [258], [259], as well as
previously mentioned security and privacy issues should
be done ahead of issuing certifications of mHealth
systems being used in daily life and even medical
scenarios.

It is worth mentioning that deploying CS systems can be
regarded as the accumulation of deploying PS systems in a
community, sometimes leveraging the same sensor technolo-
gies, collecting the same kinds of data, but varying in specific
individual-level or population-level purposes. Thus, most of
the objectives in PS are also what the CS paradigm pursues
in practice by-the-way. In summary, here we present a Venn
diagram to conclude the objectives of PS, CS, and mHealth
sensing specified above, as shown in Fig. 5. For example,
in CS for population health practices, improvements in ser-
vice provided and data precision also certainly increase the
performance of the systems.

IV. TAXONOMY SYSTEM II (CLASSIFICATION OF

MHEALTH SENSING BY SENSING SYSTEMS D&I)

In this section, as shown in Fig. 6, for each step of the
mHealth sensing life cycle, we present and discuss the sensing
systems D&I issues on PS for personalized medicine and CS
for population health.

A. Design and Implementation Issues in Sensing Task
Creation & Participation

To clarify how to promote users’ participation and engage-
ment leveraging services and recruitment, respectively, in
PS for personalized medicine and CS for population health
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Fig. 6. Taxonomy system II—sensing systems design and implementation (D&I).

systems, in this section, we intend to specify the detail D&I
issues of the two paradigms as follows.

1) Personal Sensing for Personalized Medicine: The pro-
motion of user engagement in personalized medicine systems
is by providing services. Here, we discuss two typical forms
of user engagement services—1) clinical health service and
human–computer interaction (HCI) and 2) gamification and
attraction.

1) Health Service and HCI: Providing straightforward and
effective clinical health service with good HCI design
for user experience is the most intuitive way to increase
users’ active engagement, since the essential motivation
of the users downloading the app is to obtain personal
health benefit [260], [261]. In practice, user engagement
strategies can be organized as setting sensing health-
related targets around users’ personalized objectives,
delivering adaptive therapeutic feedback, including pos-
itive reinforcement, reflection reminders, and challeng-
ing negative thoughts [262], and designing easy-to-use
platforms [198]. For instance, Cai et al. [263], [264]
proposed to prompt an adaptive and passive personal
mobile sensing framework to provide EMA and inter-
vention services based on reinforcement learning tech-
niques, which significantly increased user engagement
in healthcare systems.

2) Gamification and Attraction: Gamifying the mHealth
sensing systems for providing entertainment would pro-
mote user engagement, as not only mobile sensing data
can be used as input for gamification [265] but also
mobile apps are excellent and prevailing mobile carriers
for pervasive entertainment [266]. In practice, gami-
fication strategies are widely applied in personalized
medicine systems to promote participation, such as self-
report data collection [267], [268] (e.g., setting the goals
of the game as the indices to be sensed), data preanal-
ysis on client [269] (e.g., pop-up windows asking the
user about the activity and status when the app detects
a sequence of abnormal indices), and health interven-
tion wrapping [270] (e.g., relaxing users via games).
Typically, Rabbi et al. [268] designed an app named

SARA, which integrates gamified engagement strategies,
including contingent rewards, badges for completing
active health tasks, funny memes/gifs and life insights,
and health-related reminders or notifications.

2) Crowdsensing for Population Health: While gamifi-
cation could attract participants to engage PS and enable
personalized medicine for every participating individual, to
scale-up the coverage of health status monitoring for public
health purposes, participant recruitment with monetary incen-
tives has been frequently used [271] as the compensation to
participants’ concerns on costs and privacy.

1) Recruitment With Monetary Incentives: Monetary incen-
tivization is an intuitive way to quantify and equalize
participants’ efforts and benefits, though some volun-
tary CS activities also do exist. In practice, for research
or business purposes, mHealth professionals and insur-
ance companies may consider mHealth systems as tools
for groups of interests [272]. The monetary incen-
tives strategies can be further divided into categories
as platform-centric and user-centric methods [55]. The
platform-centric methods refer to that the allocation and
adjustment of incentives are charged by the organizers.
For example, based on game theory [273], the orga-
nizers can lead the task and adjust the strategies by
measuring the individual/overall performance of the par-
ticipants [274]. The user-centric methods are mostly
conducted in an auction manner, where participants bid
for the tasks published, and the participants with the low-
est bids are dynamically paid to complete the sensing
tasks [275].

In addition to the above incentive models, there are some
works focusing on the participant selection and incentive allo-
cation problems [54], [58], [59], [231], [232], [276]–[278]
under certain budgets and data collection objec-
tives/constraints, since sometimes too straightforward
incentive allocation may lead to biased selection and low
retention rate in recruited populations [279]. Specifically,
Xiong et al. [59], [276]–[278] proposed several participant
recruitment strategies for MCS in either online or offline
manners. Wang et al. [231], [232] studied the problem of
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Fig. 7. Comparison of sensing schemes from granularity and coverage
perspectives.

participant recruitment and task/incentive allocation in the
context of multitasking, where incentives are allocated to the
same pool of potential participants for multiple tasks with
shared budgets, via hierarchical data collection objectives. The
same group of researchers also studied to collect population
health-related data from large crowds with nonmonetary
incentives in practice [66], [280].

B. Design and Implementation Issues in Health Surveillance
and Data Collection

In health surveillance and data collection, for data qual-
ity, sensing schemes and data gathering approaches are the
main D&I issues. As shown in Fig. 7, in mHealth Sensing
data collection, either it requires widespread hardware/media
(e.g., social network) with pervasive coverage for popula-
tion health, or more dedicated devices (e.g., portable medical
devices) for granularity and professionalism in personalized
medicine, though in most cases they share some pervasive
sensing technologies (e.g., smartphone and wearable sensing).
Also, besides varying sensing schemes, several specific trails,
surveys, and evaluation approaches mostly considered in the
CS paradigm are discussed in this phase.

1) Personal Sensing for Personalized Medicine: Though
the two paradigms sometimes adopt common sensing schemes
(e.g., wearable devices and mobile devices shown in Fig. 7)
under some circumstances, for the objectives on numerical
accuracy and longitudinal coverage, the sensing schemes in
PS practices are more granularity oriented.

1) Granularity-Oriented Sensing Schemes: To accurately
monitor user physical/environmental dynamics in a
timely manner, some dedicated and intensive sensors
deployed in medical devices are commonly used in
PS practices, such as mobile fall detection devices for
elderly care in living scenarios [281]–[283] and inten-
sive location/maneuvers monitoring devices in hospital
scenarios [284], [285], which are equipped with radar.
For example, Fang et al. [286], [287] purposely embed-
ded the radio sensor into wearable devices as a powerful
sensing modality to provide whole-body activity and
vital sign monitoring in a clinical context , which serves

as an example that specialized sensing schemes provide
richer function in PS scenarios.

2) Crowdsensing for Population Health: To broadly collect
health-related data with guarantees of population coverage and
data fidelity, in CS practice, the specific sensing systems D&I
issues lie in coverage-oriented sensing schemes (for population
coverage), trials, surveys, and evaluations (for data collection
efficiency and fidelity).

1) Coverage-Oriented Sensing Schemes: In CS practices,
though many sensing schemes are the same as those
used in the PS systems as shown in Fig. 7, in order
to enable the system to be used in a larger popu-
lation coverage, ubiquitous sensing schemes are pre-
vailing in CS practices, such as social media (e.g.,
Facebook and Twitter) [288] and large-scale human
mobility data, which is not gathered dedicatedly for
health-related purposes [87], [289]. For instance, De
Choudhury et al. [290], [291] used passive sensed data
from social medias to measure and predict depression
in populations, even further to discover shifts to suicidal
tendency from content in Reddit [292].

2) Trials, Surveys, and Evaluations: In the CS data collec-
tion process, it is essential to motivate participants to
keep uploading sensing data with efficiency and fidelity.
Typically, trail and survey schemes are for efficiency,
and data evaluation schemes are for fidelity. As for
trails and surveys, microrandomized trials (MRTs) are
tools for maintaining and improving participants’ effi-
ciency by optimizing the combinations of incentives
(e.g., varying levels of monetary incentives, and virtual
rewards) [293]–[295]. As for evaluation schemes, they
are for enforcing data fidelity [296]. In specific, once a
new round of data is collected, but before accepting the
data as convincing, the data fidelity is estimated and only
convincing data is gathered; according to the estimation,
positive or negative feedback is given to participants to
reward/punish them in the following rounds. An intuitive
scheme, named truth discovery [297], is to let multiple
participants finish a same task to find the wrong-data
providers [298]. However, this repeated validation man-
ner cannot be adopted for health-related data collection,
since sensitive personal data can only be sensed by the
individual himself/herself. The trust framework [299] is
an alternative means to solve this. Some measurement
methods can be used to establish a credit rating measure-
ment system for participants, and implement different
acceptance of data contributed by users with different
credits, and varied tasks and incentives are dynami-
cally allocated to enforce participants’ performance in
the following sensing rounds [300], [301].

C. Design and Implementation Issues in Data Analysis and
Knowledge Discovery

With respect to detailed sensing objectives listed in
Section III-C, we one-by-one discuss the detail systems D&I
issues in this section. Generally, data analysis in personalized
medicine practices mostly classify and predict the health status
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Fig. 8. Data analysis and knowledge discovery workflows in three typical PS and CS systems. (a) Personal sensing for personalized medicine—both for health
status recognition and prediction. (b) Crowdsensing for population health monitoring and assessments. (c) Crowdsensing for population health determinants
discovery.

and progression via longitudinal data precisely collected from
individuals; while, for the population health objective, data
analysis is mainly to regress and discover the health deter-
minants leveraging data ubiquitously collected among large
groups.

1) Personal Sensing for Personalized Medicine: In PS, Data
Analysis & Knowledge Discovery serves to mine collected raw
data to realize health status recognition or health progression
predictions.

1) Health Status Recognition and Interventions: As shown
in Fig. 8(a), according to different health status, the PS
systems could deliver varying interventions as health-
care services for users. What is more, the systems
can further recognize users’ following status for mea-
surement of the interventions’ effectiveness to refine
the strategies and suit the users [302], [303]. As
for implementations, activity recognition approaches
are helpful for health status modeling and recogni-
tion [304]–[306]. Okeye et al. [307], [308] proposed
multiple-sensors-based activity recognition schemes by
extracting knowledge from smart ambiences; and
Triboan et al. [309]–[311] improved the activity recog-
nition methods to be applied in complex environments
in a more real-time and fine-grained manner. Besides,
MRTs [312] are ideal tools to deliver JITAI for patients.
As stated in Section IV-B, the analogous to the designs
of MRTs in improving the effectiveness of interventions.

2) Health Outcomes and Progression Predictions: Due
to the fact that most health problems are determined
by multiple pathogenic factors and sometimes progress
slowly, it is not trivial for conventional clinical methods
to effectively predict health outcomes and progressions
via sparse clinical records [313]. PS data provide rich
personalized information to model the health status of
the user and predict his/her future health outcomes
and progressions. As shown in Fig. 8(a), after collect-
ing raw data (e.g., GPS location, microphone signal,

and screen status), digital physical and environmental
biomarkers (e.g., places, ambient noises, and app usages)
can be extracted [314], [315]. Then, personal health sta-
tus modeling and prediction models analyze individuals’
clinical status and predict health outcomes and progres-
sions with consideration of longitudinal data, both cur-
rent and historical. For instance, in the machine learning
era, feature embedding and deep learning techniques are
good tools to solve the challenges in multidimensional
pathogenic factors and long-term disease progression;
specifically, feature embedding techniques (e.g., graph
embedding) automatically learn and extract influen-
tial features [316], and deep learning models (e.g.,
RNNs and GNNs) could serve as predictors with great
performance in dynamically capturing patterns in tem-
poral and other dimensions [237], [238], [317].

2) Crowdsensing for Population Health: We discuss two
typical applications (i.e., population health status measure-
ment and health determinants discovery) to conclude D&I in
CS applications.

1) Population Health Monitoring and Assessments:
Intuitively, as shown in Fig. 8(b), once sensing tasks
among a group of users are adopted, organizers can
scan the clinical status among populations and achieve
assessment of population status. Furthermore, in the
population assessment models, some techniques (i.e.,
transfer learning [318]) inspired by some character-
istics of population health problems, such as spatial
correlation, help achieve low-error surveys of the entire
target group by only monitoring a subset of users. For
example, to investigate a large group of people, such
as the citizens of a country, Chen et al. [66] studied
and indicated spatiotemporal correlation of neighboring
regions and proposed to do data inference for the whole
map with limited region samples, which gives insights
in operating population health monitoring in a CS
manner.
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TABLE III
SUMMARY OF TWO TAXONOMY SYSTEMS FOR MHEALTH PS AND CS

2) Health Determinants Discovery: As shown in Fig. 8(c),
the sensing systems D&I issues on mHealth sensing
systems for population health determinants discovery
may differ. Specifically, in clinical practices, especially
for mental health and chronic illness, with prior knowl-
edge, such as clinical diagnosis and EMA, organizers
massively collecting multimodal data from participants
and analyze population patterns among participants’
biomarkers and clinical diagnosis to understand health
determinants; finally, population knowledge serves as
feedback, which benefits to the participants themselves
(for health-related interests), organizers, and researchers
(for knowledge about the health issues). From the imple-
mentation perspective, large-scale data analysis methods
give insights on population health knowledge discov-
ery (e.g., inference and understanding) from CS data.
For instance, machine learning methods such as clus-
tering algorithms are widely used to classify individ-
uals into groups according to common health-related
patterns [319]. Statistical methods, such as statisti-
cal inference, are also promising confirmatory tools
for understanding and inference on clinical conclusion,
which, compared to machine learning, is commonly
leveraged by medical scientists since it is a hypothesis-
driven and more interpretable method [320]. For exam-
ple, Boukhechba et al. [87] used social interaction
anxiety scale (SIAS) correlation analysis to understand
how social anxiety symptoms manifest in the daily lives
of college students. Huang et al. [7] operated a least
absolute shrinkage and selection operator (LASSO) lin-
ear regression model to infer the causal relationship
between mental health disorders and location semantics.

In addition to the above issues, the sparsity, bias, and insuffi-
cient coverage of collected data, in terms of either surveillance
time or the number of human subjects, due to the privacy
controls and other concerns, requires more efforts in sensing
systems design and implementation [25], [321], [322].

V. FUTURE DIRECTIONS

In this work, we reviewed the applications and systems of
PS and CS for personalized medicine and population health,

respectively, and proposed two taxonomy systems for mHealth
Sensing systems from the perspectives of “sensing objectives”
and “sensing systems D&I”. Here, we summarize the two tax-
onomy systems in Table III. In future work, we would be
looking forward to research in the following directions.

A. Sensors and Sensing Platforms

Innovations in sensors and sensing platforms have driven
the advances of mHealth Sensing. For example, over the
past decade, GPS embedded in cell phones has enabled per-
vasive location-based services and related platforms, which
provided new insights on understanding health issues by mon-
itoring human mobility and behavior [41]. Similarly, we see
tremendous potential for leveraging recent advancements in
recent smartphone-embedded sensors (e.g., TrueDepth sen-
sor1 deployed in the iPhone, Radar sensor embedded in the
Google’s Pixel,2 and mobile biosensors for blood oxygen,
skin, etc.) to design the next generation of mHealth sens-
ing. A promising direction would be related to the design of
novel sensors and related sensing platforms to enable better
health management systems. For example, mobile radar can
be creatively used to improve the precision of body vibration
recognition, which has good application prospects, especially
in at-home elderly care scenarios.

B. Data Limitation and Data Fidelity

In terms of the data collected in mHealth practices, data lim-
itation and data fidelity are still problems hindering research
progress. To be specific, from the perspective of partici-
pation, mHealth studies are usually small and adherence is
a consistent challenge that can cause the collected data to
be not sufficient enough to verify the conclusions. As for
the data collection process, imperfect data collection caused
by different user habits, and sensors’ manufacturer, model,
version, and sampling rate commonly exists [323], [324], caus-
ing discontinuous collected data. Furthermore, participants’

1About Face ID advanced technology, ttps://support.apple.com/en-
us/HT208108.

2Google’s Pixel 4 will include a radar sensor—here is why that could mat-
ter for health, https://www.mobihealthnews.com/news/north-america/googles-
pixel-4-will-include-radar-sensor-heres-why-could-matter-health.
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misoperation or nonadherence would lead to biased/error data
gathering and false health conclusions [325]. In terms of data
analysis, inevitable missing data problem causes difficulties
in data analysis. Due to the limitation of the model, many
missing data fragments can only be cut off. Thus, works
focused at investigating novel mechanisms for improving par-
ticipants’ engagement are still needed. We believe that research
in enhancing user-experience design and improving incentive
strategies are crucial. Furthermore, advances in data imputa-
tion and embedding methods tailored to mHealth studies are
needed to mitigate the impact of heterogeneous mHealth data.

C. Privacy and Security Preserving for mHealth

Note that privacy and security have been widely studied
in medical IoTs or medical CPSs [162], [163], [167]–[169],
[326], [327]. Compared to medical IoTs or medical CPSs
deployed at homes or professional clinics, the mHealth sens-
ing systems leveraging the sensors embedded in ubiquitous
mobile devices make the privacy and security issues even
more complicated. Moreover, the lack of privacy and secu-
rity protection is still a challenging obstacle that affects users’
willingness of participation and engagement in mHealth sens-
ing. To secure the personal health data from potential leakages,
encryption techniques [328] could be used and optimized
for mHealth data management. Additionally, privacy protec-
tion that controls the access of mobile apps to some critical
information [329], [330] is also required to scale-up mHealth
in societies. In this way, mobile developers should frequently
develop and update the applications with user verification as
needed to minimize data access. Thus, a unified and integrated
approach, combining the data security and privacy controls
subject to the principle of least privilege [331], [332] for
mHealth sensing, might be a promising direction for future
research.

D. Risks and Ethical Issues in Human-Subject Studies

mHealth research is heavily based on human-subject studies
where human are actively being involved in the data collection,
data analysis, and information disclosures, causing potential
risks and ethical issues. Though some works have been done in
software development and data science domains [333], [334],
this topic is still understudied. While clinical medical practices
pay significant attention to risk analysis and ethical princi-
ples [335], the risk analysis and ethical issues in mHealth
area are not properly studied and addressed [258], [259]. For
example, while medical records and conclusions are drawn
under highly professional processes and stored separately by
hospitals’ databases with strict rules for sharing, the measure-
ments and decisions in mHealth practices may not be as strictly
conducted [257]. Truly, some mHealth sensing systems, such
as sensus [4], already include protocol certification and eth-
ical review components in the system to monitor the whole
life cycles of mHealth CS. In the future, scientific study,
protocol management, risk analysis, ethical review, and even
prescription management [336] criteria and techniques should
be further studied, especially for commercially used mHealth
sensing systems.

VI. LIMITATIONS AND CONCLUSION

The mHealth sensing is a practical approach in the mod-
ern healthcare domain, which is being widely used for the
objectives on either: 1) personalized medicine for individ-
uals or 2) public health for populations. In this work, we
reviewed and summarized mHealth sensing systems deployed
over smartphones and commodity ubiquitous devices. Though
there are many methods for reporting systematic reviews (e.g.,
PRISMA [337]), in this article, our review method is mainly
intuition driven and vision based. We have covered more
than 300 papers, and have proposed new taxonomy systems
that summarize and categorize existing works in two sens-
ing paradigms (i.e., Personal and CS) and three stages of the
mHealth sensing life cycles in detail.

Also, though we have tried our best to cover the important
works in this area and related fields, this survey is still with
several limitations. For example, this work did not include pro-
fessional medical systems for medicare/rehabilitation/assisted
living purposes, such as medical sensors [153]–[156], Internet
of Medical Things (Medical IoTs) and Medical Cyber-
Physical Systems (Medical CPSs) [157]–[174], and medical
robots [175]–[178]. Furthermore, there have been a number
of great works surveying or reviewing this area and related
fields [1], [44], [107], [140], [216], [222], [224], [225], [234],
[259], [273], [285], [296], [338]–[342], while we have not
compared our taxonomy systems with these works.

To systematically summarize the existing studies and iden-
tify the potential directions in this emerging research domain,
this work actually presents two novel taxonomy systems from
two major perspectives [i.e., sensing objectives and sensing
paradigms and Designs and Implementations (D&Is)] that can
specify and classify apps/systems from steps in the life cycles
of mHealth sensing: 1) sensing task creation and participation;
2) health surveillance and data collection; and 3) data anal-
ysis and knowledge discovery. By discussing the real-world
mHealth sensing apps/systems within the proposed taxonomy
systems, most of the research problems in mHealth sensing
can be formally classified, and several future research direc-
tions are pointed out, targeting to provide structural knowledge
and insightful ideas and guidance for researchers in the related
field.
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