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Abstract
Time series models often are impacted by extreme events and anomalies, both preva-
lent in real-world datasets. Such models require careful probabilistic forecasts, which
is vital in risk management for extreme events such as hurricanes and pandemics.
However, it’s challenging to automatically detect and learn from extreme events and
anomalies for large-scale datasets which often results in extra manual efforts. Here, we
propose an anomaly-aware forecast framework that leverages the effects of anomalies
to improve its prediction accuracy during the presence of extreme events. Our model
has trained to extract anomalies automatically and incorporates them through an atten-
tionmechanism to increase the accuracy of forecasts during extreme events.Moreover,
the framework employs a dynamic uncertainty optimization algorithm that reduces the
uncertainty of forecasts in an online manner. The proposed framework demonstrated
consistent superior accuracy with less uncertainty on three datasets with different
varieties of anomalies over the current prediction models.
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1 Introduction

Time series forecasting during the presence of extreme events is a critical tool for
resource allocation and resilience planning (Jing et al. 2021; Santos-Burgoa et al.
2018;Khan et al. 2021). Extreme events such as natural disasters are causingmore than
400% economic damage in the U.S. compared to 1990s (Smith 2022). This requires
us to develop highly accurate forecasts with low uncertainty to uncover the influence
of external events on large-scale time series data (Adilova et al. 2021). Moreover, it
is crucial to understand how different industries are influenced by and recover from
such extreme events over time (Rolnick et al. 2019). Yet, it remains a challenge to
develop such reliable and accurate forecasting models, as the real-world dataset often
contains anomalies that are in their nature rare and random. Therefore, it is important
to develop a forecast model that can leverage the previously seen extreme events and
anomalies for their forecasts.

Although there have been considerable achievements in machine learning-based
models, existing methods tend to overlook anomalies’ special effects on real-world
time series data. For instance, LSTMs (Hochreiter and Schmidhuber 1997) are widely
used to address the vanishing gradient problemvia gatemechanism and have the ability
to capture complex temporal dependencies (Zhu and Laptev 2017; Laptev et al. 2017).
However, Khandelwal et al. (2018) show that even LSTMs have a limited ability to
capture long-term dependencies, and their awareness of context degrades as the length
of the input sequence increases. Consequently, making them inefficient to capture and
learn from rare occurrences or extreme events.

As an alternative, Li et al. (2019) considered the use of transformer models for
time series forecasting. Transformers benefit from the self-attentionmechanismwhich
allows each observation in the feature sequence to attend independently to every
other feature in the sequence. However, they have considerable computational and
memory requirements that grow quadratically with respect to sequence length, making
it computationally rigorous to train large-scale data (Li et al. 2019). Such deficiency
makes them computationally unsuitable for extreme events that often appear in longer
sequences than the transformer inputs. Moreover, it was not even clear from the design
itself that transformers can be as effective as RNNs, whereas Zaheer et al. (2020)
reported that the attentionmechanism in transformers does not even obey the sequence
order of time steps which is essential for the time series domain. Furthermore, non-
transformer architectures (i.e. MLP) have been shown to perform competitively with
transformers when designed and trained properly (Tolstikhin et al. 2021).

This lack of systematic strategy to handle anomalies and not provide forecasts
with nontransparent uncertainty levels makes the current forecast model unreliable
during the presence of extreme events. As a result, a key aspect of our knowledge in
developing time series models for critical moments of extreme events will remain a
puzzle unless the long-term effects of anomalies are well captured and utilized.
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Contribution. This work proposes a novel and generalized anomaly-aware prediction
framework,AA-Forecast,which automatically extracts and uses anomalies to optimize
its probabilistic forecasting. Specifically,

• AA-Forecast extracts anomalies through a novel decomposition method and lever-
ages them through an attention mechanism designed to optimize its probabilistic
forecasting during extreme events. Also, AA-Forecast is able to perform zero-shot
prediction for unseen time series and does not suffer from quadratic computational
time and memory complexity of transformers.

• An online optimization procedure is proposed to minimize the prediction uncer-
tainties of the AA-Forecast framework, which features applying the optimal
dropout probability at each time step during the testing.

• Extensive experimental studies are conducted on three real-world datasets that
are prone to extreme events and anomalies. The comparisons with state-of-the-art
models illustrate the higher accuracy and less uncertainty in the AA-Forecast’s
prediction.

2 Problem formulation

In this study, we are interested in the task of time series forecasting under the influ-
ence of extreme events and anomalies. Given a dataset D = {x(1), x(2), . . . , x(K )}
with K univariate time series, x(k) = {x (k)

1 , x (k)
2 , . . . , x (k)

T } denotes a time series
instance with length T , where x(k) ∈ R

T . For every time step, the corresponding
extreme events are aligned and labeled as covariates e(k) = {e(k)

1 , e(k)
2 , . . . , e(k)

T }.
Extreme events are considered as the influence of external events that promote a
dynamic occurrence within a limited time steps (Broska et al. 2020). Specifically,
e(k)
t ∈ R indicates the level of extreme event (e.g., hurricane category) at time t ,
otherwise, e(k)

t = 0 indicates a non-extreme event condition for periods outside of
the event. To this end, we denote the data with extreme events as a series of tuples

x̂(k) Δ= {(x (k)
1 , e(k)

1 ), (x (k)
2 , e(k)

2 ), . . . , (x (k)
T , e(k)

T )}. Particularly, given the previous τ

observations x̂(k)
t−τ+1:t = {(x (k)

t−τ+1, e
(k)
t−τ+1), (x

(k)
t−τ+2, e

(k)
t−τ+2), . . . , (x

(k)
t , e(k)

t )}, we
aim to model the conditional distribution of the next observation:

p(x (k)
t+1 |̂x(k)

t−τ+1:t ;�), (1)

where� denotes the parameters of a nonlinear predictionmodel.We are also interested
in reducing the uncertainty of predictions in an online setting, whereas uncertainty of
prediction can be viewed as the variability of the distribution. Therefore, the optimiza-
tion problem during the online settings is defined as follows:

�∗
on = argmin� V

(

p(x (k)
t+1 | x̂(k)

t−τ+1:t ;�)
)

, (2)

123



1212 A. Farhangi et al.

Extreme
Events

Residual

Seasonal

Observed

Anomaly-Aware Model

AA-Model Layer

Dense
Trend

Optimal Distribution of Forecast

STAR 
Decomposition

Anomalies

Dropout 
Mechanism

Final PredictionDynamic Uncertainty 
Optimization

OutputOutput

Optimal 
Output

Dynamic 
Dropout

Dense

Optimal 
Uncertainty

Output

Fig. 1 Main components of AA-Forecast: (i) STAR Decomposition to automatically extract essential
features such as anomalies, (ii) an Anomaly-Aware Model to leverage such extracted features, and (iii) a
Dynamic Uncertainty Optimization to reduce the uncertainty of the network. The final predicted series
contains confidence intervals with the least uncertainty

where V (·) represents the variability of the probability distribution and �∗
on is the

optimal online parameters of the nonlinear prediction model that produces the least
amount of uncertainty in each time step.

3 AA-forecast framework

The proposed AA-Forecast framework consists of three main components. Section 3.1
proposes a novel anomaly decomposition method that automatically extracts the
anomalies and essential features of the time series data. Then, the extracted anomalies
are fed into an anomaly-aware model detailed in Sect. 3.2. Specifically, it leverages an
attention mechanism on anomalies and extreme events to produce the distribution of
the forecasts. To further reduce the forecast uncertainty in an online manner, Sect. 3.3
proposes a dynamic uncertainty optimization algorithm.

3.1 STAR decomposition

STAR decomposition is used as a strategy to not only extract the anomalies and sudden
changes of data but also decompose the complex time series to its essential compo-
nents. Unfortunately, widely popular decomposition method such as STL (Cleveland
et al. 1990) does not extract anomalies. Although recent works such as STR (Doku-
mentov and Hyndman 2020) and RobustSTL (Wen et al. 2019) are designed to be
robust to the extreme effect of anomalies in their decomposition, they are not used to
explicitly extract anomalies from the residual component.

To alleviate these issues, we propose STAR decomposition that decomposes the
original time series x(k) in a multiplicative manner to its seasonal (s(k)), trend (t(k)),
anomalies (a(k)), and residual (r(k)) components:

x(k) = s(k) × t(k) × a(k) × r(k) (3)

Such decomposition is important due to increasing the dimensions of the original
data and providing the model with automatic extraction of anomalies. As shown in
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Fig. 1, we begin the decomposition by approximating the trend line t(k) with the locally
weighted scatterplot smoothing (i.e., LOESS Cleveland 1979). Then, we divide the
original data x(k) by the approximated trend line to derive the detrended time series.1

We then partition the detrended time series into periods of cyclic sub-series where
the cycle size is determined by the time interval of the dataset. As an example, the
cycle size for a monthly dataset would be 12 (one year as a cycle). Then we obtain
the seasonal component (s(k)) by grouping the detrended series in each period and
deriving the average value of each period across the time series. Subsequently, the
residual component (r(k)) is derived by dividing the seasonal and trend segments from
the original series.

Note that the anomaly component (a(k)) can be considered as the oddities of the
dataset, which do not follow the extracted trend or seasonal components. Intuitively,
the anomalies spread through the residual components, which also contain noise and
other real-world effects. Todistinguish anomalies from residual components, statistical
metrics such as mean and variance are not the appropriate measure as they are highly
sensitive to the severity level of anomaly values. As one expects, the severity of the
anomalies can change the mean and variance values which are unwanted. To resolve
this issue, we leverage the median of the residuals, which is immune to the severity
of the outliers in the residual components. Next, we define robustness score ρ

(k)
t for

each observation at time t as:

ρ
(k)
t = |r (k)

t − ṙ (k)|
√

∑T
t=1 |r (k)

t −ṙ (k)|
T−1

(4)

where ρ
(k)
t stands for the strength of the anomalies, r (k)

t is the residual at time step t
and ṙ (k) is the median of the residuals.

Note that the larger ρt indicates that a drastic change has occurred in the trend and
seasonal components. We then extract the anomalies from the residuals as follows:

a(k)
t =

{

1, ρ
(k)
t < ρ

(k)
c

r (k)
t , ρ

(k)
t > ρ

(k)
c

(5)

where ρ
(k)
c is the constant threshold given by the value of a robustness score ranked in

the p-value 0.052 while the values of elements in ρ(k) are ranked in descending order
from large to small.

Notably, when the value of the anomaly component (a(k)) deviates further from the
value 1, it indicates an abrupt change in the trend and the seasonal component (no
sign of anomalies). On the contrary, when both anomaly and residual values are equal
1 (r(k)

t = 1 and a(k)
t = 1), it indicates that the observed signal at time t explicitly

follows the trend and the seasonal component. Note that such important information

1 We use the log transform of x(k) to handle the situation that specific values of original data are zero.
2 Adopted based on the choice of the p value (0.05) which is used as a standard level of statistical signifi-
cance.
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might not be automatically inferred when additive decomposition methods are being
used. This is due to the fact that the values of residual components can differ from one
dataset to another, which requires manual effort in their detection.

A sample result of anomaly decomposition is shown in Fig. 4, where the observed
time series data is decomposed into its seasonal, trend, anomalies, and residual com-
ponents respectfully. Each of these components holds essential information about
the characteristics of the time series and will be leveraged to train the forecast
model. To this end, we concatenate the derived decomposed vector of the time
series with the input, which includes the observed time series and its labeled extreme
event. Specifically, the STAR decomposition concatenates the original time series to
x̃(k) = (x(k), e(k), s(k), t(k), a(k), r(k)) which can be leveraged by the anomaly-aware
model described in the next section.

3.2 Anomaly-awaremodel

The Anomaly-Aware model is designed to explicitly incorporate extracted anomalies
a(k) and extreme event covariates e(k) into the prediction. As these features are rare in
thewhole time series, feeding themdirectly into a regular RNN like LSTM (Hochreiter
and Schmidhuber 1997) can be potentially ignored during the training of the model.
Note that the extracted anomalies and previously experienced external events hold
valuable information regarding the effect of extreme events that should be handled
carefully.

Recent robust prediction models rely on the LSTMs or transformers architecture to
provide robustness in their prediction. Although LSTMs are designed to obtain long-
term dependencies, their ability to pay different degrees of attention to sub-window
features within large time steps is inadequate (Zaheer et al. 2020). As an example,
Khandelwal et al. (2018) showed that even though the LSTM model can have an
effective sequence size of 200 observations, they are only able to sharply distinguish
the 50 closest observations. This indicates that even LSTMs struggle to capture long-
termdependencies.On the other hand, conventional transformers suffer fromquadratic
computation andmemory requirements, which limits their ability to process long input
sequences.

Even though such memory bottlenecks have been improved by using sparse-
attention algorithms (Li et al. 2019), their performance improvement is not significant
compared to a full-attention mechanism for real-world datasets (Lim et al. 2019).
Given that extreme events and anomalies are rare and can appear at very long dis-
tances from each other, it is computationally infeasible to increase the input sequence
to provide attention to all previously seen anomalies and extreme events.

To address such problems, one must pay attention to all the anomalies and extreme
events throughout the dataset, no matter how far they have occurred. Intuitively, due
to their rare nature, they are of greater importance in learning, given that the trend
and seasonal patterns are often easier to predict by statistical or deep learning models.
Ergo, we developed a novel attention mechanism explicitly for extreme events and
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anomalies, which are considered the crucial time steps of time series data and often
cause the biggest error in prediction.

Architecture design of AA-model. LSTMs and GRUs are suitable for predicting
the recurring patterns with a fairly low computational time and memory complexity
which suffer from thequadratic complexity of full-attention transformers.However,we
enhance the long-term dependencies of these models through an attention mechanism
that retains the effect of anomalies and extreme events for future predictions. Such a
decision in architecture allows the model not only to be computationally feasible for
handling large-scale datasets but also to take the critical moments of extreme events
and anomalies into consideration.

Given the past τ time steps of observations as x̃t :t−τ+1
3, we derive the hidden states

of an RNN that deals with vanishing gradient problem (e.g., LSTM or GRU) as:

ht :t−τ+1 = RNN (x̃t :t−τ+1) , (6)

where ht is the hidden layer of RNN at time step t . Note that we are only paying
attention to anomalies and extreme events which are naturally rare and belong to a
small population of observations. Moreover, both could have different impacts on
the prediction and based on the type of dataset, can be challenging to model. Hence,
we design the attention mechanism to automatically incorporate extreme events and
anomalies during their occurrence:

J = {t ∈ Z
+|et �= 0 ∨ at �= 1}, (7)

where J is the set of time steps including two possible circumstances: the presence
of extreme events covariates (et �= 0) or anomalies (at �= 1). We then gather all the
previous hidden states of the RNNs for all critical time steps in J and regularize them
by the weights generated from the attention layer as vt which follows:

vt = tanh(w�
α ht + bα), ∀t ∈ J (8)

wherewα and bα are the attention layer’sweight and bias. Then,we derive the attention
weights of all previous values as:

αt = Softmax (v1, v2, . . . , vt ) , ∀t ∈ J (9)

where αt is the attention weight at the critical time steps. The generated attention
weights are then used in the AA-Forecast layer as:

At =
{

ht , ∀t /∈ J
∑

t∈J αt · ht , ∀t ∈ J
(10)

where the attention values are only calculated in the presence of anomalies and extreme
events as shown in Fig. 2. The value of the next time step is calculated through a dense

3 To reduce the ambiguity of the AA-Forecast layer, we are omitting the superscript (k) from this section
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Fig. 2 Left: AA-model architectures. Right: Dynamic dropout μt determines the optimal probability of
dropout at each time step during the online settings (i.e., inference). The output ŷ consists of a distribution
of predicted test values. The dropout optimization improves the certainty and accuracy at each time step t
by determining how relevant the previous hidden state is for the next time step prediction

layer:

yt+1 = wd(At :t−τ+1) + bd , (11)

where wd and bd are the weights and biases of the dense layer. To train the network,
we minimize the prediction loss L which is defined as follows:

�∗
off = argmin� L (F�(̃x), y) , (12)

whereF� is the anomaly-aware model and y is the training label, which is the ground
truth of the next time step prediction. Note that �∗

off represents the optimal model
parameters after the offline training phase.

3.3 Dynamic uncertainty optimization

AlthoughMonteCarlo (MC) dropout (Gal andGhahramani 2016) probability is treated
as a static hyperparameter in previous studies (Salinas et al. 2020; Laptev et al. 2017),
it plays an important role in the prediction outcome and can be leveraged to reduce the
uncertainty of the prediction during the testing phase (Wahab et al. 2020). Therefore,
we rely on an automatic selection mechanism for optimal dropout in online settings.
Such selection is based on the uncertainty of the prediction produced during the testing
phase (Fig. 2).

Note that themodel’s uncertainty is desired to be the lowest and as stable as possible
in real-world settings. Therefore, it is essential to optimize further the uncertainty of the
model prediction both during the offline training and online testing phase. Specifically,
we apply a dropout operation after every AA-Forecast layer with a specific probability
(p).

AA-Forecast not only reports the prediction distribution, but also provides the point
prediction (average of the distribution) and the prediction uncertainty (variability of
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the distribution). Specifically, by producing M forecast for every time step in an online
manner (test data x̃∗) from the previously trained model F�(̃x), we obtain M outputs

y∗ as a from the prediction distribution
{

y∗
(1), . . . , y

∗
(M)

}

. Then, the average of the

distribution is calculated as ȳ∗ = 1
M

∑M
m=1 y

∗
(m).

We represent uncertainty as to the variability of the prediction distribution —- the
standard deviation (SD) of the probability distribution of future observations condi-
tional on the information available at the time of forecasting. We further optimize the
uncertainty of the framework by deriving the optimal dropout probability p at each
time step. We derive the prediction error for the probability p between 0 and 1 with
0.1 increments. Notably, without such probability (i.e., p = 0) the model prediction
deviates from probabilistic forecasting and does not provide a level of uncertainty in
its prediction for each time step. The optimal uncertainty μt is then reported when
it results in a minimal variance (i.e., SD) of the predicted values, thereby reducing
the prediction uncertainty to its minimum during the testing phase. To this end, the
prediction uncertainty is formulated as:

σ 2 (F�(̃x∗)
) =

√

√

√

√

1

M

M
∑

m=1

(

y∗
(m) − ȳ∗

)2
. (13)

Algorithm 1 Psuedecode for AA-Forecast
Input: data x̃(k) = (x(k), e(k), s(k), t(k), a(k), r(k))
1: Initialize parameters �

2: for k = 1 to Ktrain do
3: Sample (x̃k , yk ) from training data:
4: for b = 1 to B do
5: �e+1 ← �e - ξ ·∇ L(F�(x̃k ), yk )
6: Update the optimal parameters:

� = argmin�L(F�(x̃k ), yk )
7: end for
8: end for
9: Dynamic Uncertainty optimization: �∗ ← �

10: for δ = 0.1 to 0.9 increment by 0.1 do
11: Update the optimal uncertainty:

�∗ = argmin�V(F�(xk ))
12: end for

Algorithm 1 presents the pseudocode for AA-Forecast. Specifically, we sample
(x̃k, yk) as a driving example which includes extracted anomalies a(k) and extreme
events r(k). Next, we train the model by maximizing the overall prediction accuracy.
Upon testing, the network leveragedynamicuncertainty optimization further optimizes
the prediction uncertainty automatically in online testing so that it would not require
any further training.

Note that the network’s predictions during the testing phase cannot benefit from
the supervised training. However, the control of variability is possible and ensures
that the prediction uncertainty is minimal in each step of future predictions, regardless
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Fig. 3 Effects of dynamic uncertainty optimization on prediction error and uncertainty during the occurrence
of an anomaly. The method automatically selects the optimal probability that yields the lowest uncertainty

of whether the labels are provided or not. Additionally, the algorithm testing time
complexity is similar to otherRNN-basedmodels due to the use of dynamic uncertainty
optimization during the test phase solely. This allows the model to provide the least
amount of uncertainty during the presence of anomalies or extreme events where
critical online decisions are being made.

As an example, Fig. 3 shows that optimal uncertainty results can occur when the
standard deviation is the lowest. Intuitively, the network at p = 0.5 shows the highest
confidence in its prediction (i.e., the lowest uncertainty) where unnecessary neurons
are dropped out from the network. Therefore, the network automatically selects and
reports the p = 0.5 probability as the best choice for this time step in the testing phase.

4 Experiments

This section reportsmultiple experiments comparing the proposedAA-Forecast frame-
work with baseline models using different types of large-scale time series datasets.

4.1 Dataset and experimental settings

Three real-world time serieswith diverse structures and domains are gathered (Fig. 4).4

Table 1 provides descriptive statistics and the detailed description are as follows:

• We gathered a new spatio-temporal benchmark dataset (Hurricane), which is
suited for forecasting during extreme events and anomalies. The dataset is provided
through the Florida Department of Revenue which provides the monthly sales
revenue (2003-2020) for the tourism industry for all 67 counties of Florida which
are prone to annual hurricanes. Furthermore, we aligned and joined the raw time

4 All datasets are publicly available at https://github.com/ashfarhangi/AA-Forecast
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Fig. 4 The results of STAR Decomposition for three samples. The hurricane dataset sample is taken from
Collier county in Florida, USA and the values are normalized in USD. The COVID-19 sample is taken
from Florida state and the values show the changes (percentage) from the beginning of the pandemic. The
Electricity sample is from MT-200 and values are in kW

Table 1 Descriptive statistics of the datasets

Dataset Hurricane COVID-19 Electricity

Time step Monthly Daily Hourly

# Unique time series 9876 15,312 370

# Observation 9876 15,312 11,952,480

# Train 7900 12,250 9,561,984

# Test 1975 3062 2,390,496

# Regions 48 50 370

# Extreme events 88 100 –

# Anomalous points 102 124 672

series with the history of hurricane categories based on time for each county.
More precisely, the hurricane category indicates the maximum sustained wind
speed which can result in catastrophic damages (Oceanic 2022).

• The second dataset (COVID-19) showcases the changes in the number of employ-
ees based on one million employees active in the US during the COVID-19
pandemic and is gathered fromHomebase (Bartik et al. 2020).We further enriched
the data with the state-level policies as an indication of extreme events (e.g., the
state’s business closure order).

• The third dataset (Electricity) is a publicly available benchmark dataset that
contains the electricity consumption of 370 consumers hourly from 2011 to 2014.
Note that this benchmark dataset is anonymized and does not contain extreme event
labels, yet AA-Forecast is able to automatically extract the anomalies, indicating
abrupt changes in trend and seasonality.
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Table 2 Hyperparameters of
AA-forecast used for each
dataset

Parameter Hurricane COVID-19 Electricity

Batch size 128 64 64

Learning rate 1 × 10−5 3 × 10−5 5 × 10−5

Weight decay 1 × 10−6 1 × 10−5 1 × 10−4

Number of epochs 40 40 40

Static dropout 0.5 0.4 0.6

We propose two sets of experiments for all baseline models. The first experiment
follows a standard 80–20 dividing of the dataset to training and testing sets and τ = 12
for window length. The second experiment evaluates the zero-shot prediction capabil-
ity of the model based on various window search ranges in {3, 6, 12, 24}, and thus is
more applicable for real-world settings when the newly added time series cannot train
on a newly added time series. Hence, the second experiment evaluates the prediction
accuracy of all models on a set of completely unseen time series.

The models are implemented using Python 3.7 and tested on a cloud workstation
with two Intel Xeon 2.3 GHz CPUs, 64 GB RAM, and one Nvidia Tesla A100 GPU.
We conduct a grid search over all tunable hyperparameters on the held-out validation
set for baseline methods and our framework. The hyperparameters for each dataset
are shown in Table 2. To provide a fair evaluation, all baseline models benefit from
the essential features extracted by AA-Forecast except the ARIMAmodel which does
not benefit from multidimensional features. Moreover, future known information is
not included in all the models.

The training times of AA-forecast for all three datasets are reported in Table 3. We
kept training to 40 iterations for all experiments. The reported values are the average of
the observed error five times during the test stage. The hyperparameters of all baseline
methods are tuned based on a grid search.

4.2 Methods for comparison

The baseline methods for comparison include:

• ARIMA (Box and Pierce 1970): A traditional autoregressive integrated moving
average method for time series prediction and often used as a baseline.

• AE-LSTM (Sagheer and Kotb 2019): An LSTM network that uses an autoencoder
for deep feature extraction and provides a deterministic prediction.

• SARIMAX (Tarsitano and Amerise 2017): An autoregressive model that can han-
dle seasonality and exogenous features of time series.

• UberNN (Zhu and Laptev 2017): An LSTM-based model that uses Monte Carlo
dropout to provide uncertainty and is able to extract deep features of time series
through autoencoders.

• TSE-SC (Cai et al. 2020): was recently proposed as a Transformer-based Deep
Learning model that can forecast abrupt changes accurately. (i) STAR Decom-
position to automatically ex- tract essential features such as anomalies, (ii) an
Anomaly-Aware Model to leverage such extracted features, and (iii) a Dynamic
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Table 3 Runtime of the methods used in the study

Parameter Hurricane COVID-19 Electricity

ARIMA (Box and Pierce 1970) 2:32m 3:21m 13:56m

AE-LSTM (Sagheer and Kotb 2019) 9:57m 13:54m 42:15m

SARIMAX (Tarsitano and Amerise 2017) 3:25m 4:36m 14:56m

UberNN (Zhu and Laptev 2017) 10:52m 13:26m 44:52m

TSE-CE (Cai et al. 2020) 17:41m 21:55m 1:12:45h

AA-Forecast (GRU) 10:26m 14:23m 44:21m

w/o STAR decomposition 9:53m 12:43m 44:12m

w/o Uncertainty optimization 10:26m 14:26m 44:51m

w/o Anomaly attention 7:53m 10:12m 43:15m

Uncertainty Optimization to reduce the uncertainty of the network. The final pre-
dicted

• AA-Forecast (LSTM) is our proposed model with LSTM cells.
• AA-Forecast (GRU) is our proposed model with GRU cells.

4.3 Metrics

For providing a comprehensive evaluation, we adopted three different evaluation
metrics. The first evaluation metric is the Continuous Ranked Probability Score
(CRPS), which evaluates probabilistic forecasting. Formally defined as CRPS =
∫ ∞
−∞(F(y) − 1(y − ŷ))2 dy where F is the cumulative distribution function of its
forecast distribution and 1 is the Heaviside step function. We also report the root

mean square error (RMSE). Formally defined asRMSE =
√

1
N

∑N
i=1

(

yt,(i) − ŷt,(i)
)2

where yt is the mean of the predicted distribution at time t and ŷt is the observed value
at time t . The third evaluation metric is the standard deviation (SD) that is correlated

to the uncertainty of the prediction and is denoted as SD =
√

1
N

∑N
i=1

(

yt,(i) − ỹt
)2

where ȳ is the mean of the predicted distribution.

4.4 Experimental results

We provide two comprehensive comparisons and evaluations of the proposed AA-
Forecast framework: the aforementioned 80–20 testing where 20% of the data are
unseen, as well as the testing on zero-shot prediction where the whole time series is
unseen. In both cases, we calculate the CRPS, RMSE, and SD. Lastly, we provided
an ablation study to discuss the effectiveness of different AA-Forecast components.
The 80− 20 testing.We first used the ‘older’ 80% of each time series in training and
tested the accuracy of prediction on the rest of 20%. Table 4 reports the loss of the
networks under such 80− 20 testing, where the SD of AA-Forecast (GRU) method is
lower than all baseline methods, showing the model’s high confidence in the forecasts.
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Table 4 Performance comparison of our proposed framework and baseline models under 80 − 20 testing

Methods Metrics Dataset

Electricity COVID-19 Hurricane

ARIMA (Box and Pierce 1970) CRPS 1.150 0.103 0.761

RMSE 1.520 0.114 0.802

SD 0.225 0.011 0.106

AE-LSTM (Sagheer and Kotb 2019) CRPS 0.895 0.086 0.531

RMSE 1.296 0.087 0.576

SD 0.215 0.009 0.102

SARIMAX (Tarsitano and Amerise 2017) CRPS 0.911 0.098 0.532

RMSE 1.285 0.108 0.578

SD 0.195 0.009 0.093

UberNN (Zhu and Laptev 2017) CRPS 0.633 0.071 0.442

RMSE 1.015 0.081 0.453

SD 0.134 0.007 0.073

TSE-SC (Cai et al. 2020) CRPS 0.583 0.062 0.384

RMSE 0.983 0.072 0.423

SD 0.146 0.007 0.092

AA-Forecast (LSTM) CRPS 0.546 0.059 0.237

RMSE 0.949 0.068 0.274

SD 0.095 0.003 0.060

AA-Forecast (GRU) CRPS 0.493 0.063 0.216

RMSE 0.894 0.073 0.253

SD 0.081 0.003 0.051

Bold values indicate the best performance

Among the baseline methods, UberNN and TSE-SC have shown good accuracy
but suffer from higher SD (uncertainty) compared to the AA-Forecast (LSTM-GRU)
models. Considering that the extracted features are available for all the baseline meth-
ods, we believe the higher uncertainty of SD is due to their static dropout probability
that is constant for all time steps. Therefore, the two proposed models, AA-Forecast
(LSTM-GRU), consistently outperform state-of-the-artmethods. Considering all three
evaluation metrics, AA-Forecast (GRU) is the best-suited framework for our dataset
as it provides higher accuracy and confidence.

Zero-shot prediction: Table 5 demonstrates the zero-shot prediction abilities for the
selected models. Both AA-Forecast (LSTM-GRU) predictions follow the observed
time series in general. The prediction errors are comparably low during the pres-
ence of extreme events (i.e., hurricanes). This is mainly due to the anomaly attention
mechanism developed to further reduce the prediction error during extreme events.
Moreover, extracted anomalies from STAR decomposition led to the recall of the hur-
ricane effects on previously seen regions, thus providing predictions for unseen time
series data with a lower error given the presence of anomalies. Figure 5 showcases a
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Table 5 Performance comparisons of zero-shot prediction abilities of models using ten randomly selected
counties’ sales tax data where they have not been used in training entirely

Methods Metrics Input time window
3 6 12 24

ARIMA (Box and Pierce 1970) CRPS 0.893 0.891 0.861 0.831

RMSE 0.934 0.932 0.922 0.872

SD 0.119 0.1154 0.115 0.113

AE-LSTM (Sagheer and Kotb 2019) CRPS 0.663 0.661 0.651 0.601

RMSE 0.708 0.706 0.696 0.646

SD 0.115 0.112 0.111 0.109

SARIMAX (Tarsitano and Amerise 2017) CRPS 0.664 0.662 0.662 0.602

RMSE 0.714 0.712 0.712 0.652

SD 0.106 0.102 0.102 0.100

UberNN (Zhu and Laptev 2017) CRPS 0.547 0.545 0.535 0.485

RMSE 0.585 0.583 0.573 0.523

SD 0.086 0.082 0.082 0.08

TSE-SC (Cai et al. 2020) CRPS 0.766 0.764 0.754 0.704

RMSE 0.795 0.793 0.783 0.733

SD 0.105 0.102 0.101 0.099

AA-Forecast (LSTM) CRPS 0.362 0.361 0.351 0.301

RMSE 0.406 0.404 0.394 0.344

SD 0.073 0.071 0.069 0.067

AA-Forecast (GRU) CRPS 0.348 0.346 0.336 0.286

RMSE 0.385 0.383 0.373 0.323

SD 0.064 0.060 0.062 0.058

Bold values indicate the best performance

sample of these predictions for each model where for every time step, the prediction
uncertainty is the least.

Given that the network did not train on the selected time series directly, it’s able
to transfer its knowledge from previously seen extreme events (i.e., the effect of cat 4
hurricanes) and provide more accurate prediction when not provided with such ability.

4.5 Ablation study

In this section, we provide an extensive analysis of the performance of AA-Forecast,
as well as the impact of each component on the performance of AA-Forecast. The
results are shown in Table 6 where we removed each component and reported the
changes in accuracy and uncertainty.

Influence of anomaly-awaredecomposition:Todemonstrate that the anomaly-aware
decomposition can aid in improving the time series prediction, we fed the input series
to the predictionmodel directly. Thismodification resulted in theworst performance in
our ablation study. Note that AA-Forecast (GRU) still benefits from dynamic dropout
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Fig. 5 Zero-shot prediction for hotel tax sales ofCollierCounty, Florida,U.S.Both variations ofAA-forecast
are concatenated for demonstration

Table 6 Ablation study on AA-forecast (GRU) model using the sales tax dataset to show the effectiveness
of its components

AA-Forecast (GRU) Metrics Time window
3 6 12 24

w/o STAR decomposition CRPS 0.493 0.446 0.445 0.457

RMSE 0.512 0.464 0.463 0.494

SD 0.074 0.071 0.070 0.070

w/o Uncertainty optimization CRPS 0.429 0.431 0.43 0.367

RMSE 0.466 0.471 0.467 0.404

SD 0.088 0.088 0.087 0.083

w/o Anomaly attention CRPS 0.379 0.380 0.367 0.317

RMSE 0.416 0.417 0.404 0.354

SD 0.067 0.067 0.063 0.061

AA-forecast (GRU) CRPS 0.348 0.346 0.336 0.286

RMSE 0.385 0.383 0.373 0.323

SD 0.064 0.060 0.060 0.058

Bold values indicate the best performance

optimization and extreme event labels, and the predicted uncertainty is optimized.
However, the accuracy of AA-Forecast prediction (GRU) drops because of the limited
number of features, indicating that the neural network does not have a strong ability
to capture complex and nonlinear information. This can highlight the role of auxiliary
features such as decomposed anomalies and extreme events for forecasting.

Influence of uncertainty optimization:We also used a static dropout throughout the
experiments at every time step, which caused a substantial increase in SD. Uncertainty
optimization of dropout plays a critical role in reducing the uncertainty of the forecast
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Fig. 6 Influence of anomaly attention on hurricanes. Two Category 4 hurricanes (Wilma and Irma) have
caused similar annual sales losses. Anomaly-attention activation occurs during the presence of extreme
events which makes it computationally efficient compared to the full-attention mechanism in transformers

intervals. Such modification also caused a higher error in the forecast, which is the
model’s inability to forecast with higher confidence.

Influence of anomaly attention: We conducted experiments to demonstrate the
effectiveness of anomaly awareness through the network’s attention mechanism.
Specifically, we directly fed the extreme events and anomalies without the anomaly-
attention mechanism described in Sect. 3.2. Such change makes limits AA-Forecast’s
knowledge about hurricanes and the severity of their effects. As an example, in Fig. 6
(right), the results show that the network’s error during the presence of harder-to-
predict time points (anomalies and extreme events) weakens.

Thus, removing the attention mechanism for anomalous/extreme event points of
the dataset will reduce the performance of the model during the critical months of
extreme events such as hurricanes. Simply relying on the previously seen dataset will
not allow the network to handle external events and sudden changes effectively.

4.6 Discussion

Interpretation: The benefits of providing optimal uncertainty in prediction are
twofold: first, it provides a systematic way to aid in resource allocation. Second, it
further prepares the domain for interventions. For example, if one region receivesmore
catastrophic extreme events, the resources can be transferred to that region. Moreover,
government and industries can provide better-informed interventions and decisions
(e.g., financial aid relief during COVID-19). As shown in the ablation study, including
additional features such as extreme events and anomalous points can improve accuracy
and better prime the model to handle predictions than deviate from trend or seasonal-
ity. Moreover, as shown in Fig. 6 without proper attention to these points, they result
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in a large amount of error in forecasting. Given that such critical moments are of high
importance during extreme events such as natural disasters, the performance of the
model during critical time steps can be improved. Hence, it is essential to provide a
thorough learning objective in our time series models to not only improve the overall
performance but take critical moments into more consideration. Furthermore, allow-
ing the model to provide its level of uncertainty establishes transparency and builds a
level of trust for the users. Table 3 also showcases the runtime for the methods used
in the study. Although the traditional method’s accuracy and uncertainty are reported
less than the deep learning methods, they still have better runtime efficiency. How-
ever, they contain few learnable parameters which result in lower models’ capacity.
Moreover, they are not able to share information sharing across regions for various
time series.

Anomalies: As shown in Fig. 4, for the Hurricane case study, the anomalies start
with the losses of the early 2000s Atlantic hurricane season. Interestingly, hurricane
Irma 2017 did a similar catastrophic damage (77.16 billion) to the early 2000s season
(Oceanic 2022). which allows the model to predict with higher accuracy when trained
on previously sens effects of these anomalies. Similarly, for the COVID-19 dataset,
the anomalies start by indicating the drastic changes in lockdown order which caused
a great loss in the percentage of employment. These anomalies for each state play a
critical role in future pandemics so that enough resources can be allocated to combat
the losses (Selerio and Maglasang 2021). In the Electricity case study, note that the
larger values of anomalies need to be carefully handled given that these points of high
electricity load can lead to unplanned generation plant outages (Grace andChristiansen
2013).

Limitations & future directions: Although the dynamic dropout mechanism guar-
antees the least uncertainty in predictions, it cannot provide guarantees to do the same
for prediction accuracy. This is due to the random nature of the dropout which we left
as a future work where the dropout can appear for a predetermined distribution of the
neurons. Therefore, maximizing the useful information contained in the multidimen-
sional model serves to predict time series in extreme events. When it is not available,
it’s more reasonable to suggest methods that extract potential critical time steps such
as anomalous points (e.g., STAR decomposition).

5 Related works

Anomalies in time series data often produce a high variance of uncertainty prediction
that is difficult to predict, thus becoming a challenge for reliable model design (Zhu
and Laptev 2017; Pang et al. 2017). To provide a more reliable forecast during the
presence of anomalies, probabilistic forecasting methods are often studied, which can
report a level of uncertainty (Li et al. 2019).

The majority of Bayesian Neural Networks in probabilistic forecasting require
specific training and optimization methods and require additional model parameters
that result in a larger amount of computation. Hence, MC dropout is preferred due
to its practicability and its out-of-the-box solution (Zhu and Laptev 2017). Applying
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standard dropout to Bayesian Neural Networks often results in poor performance on
account of dropout noise preventing the network frommaintaining long-termmemory
(Labach et al. 2019). Gal and Ghahramani (2016) proposed the MC dropout, in which
the dropout can be interpreted as a sampling method that is equivalent to a variational
approximation of a deep Gaussian process. MC dropout that is used for recurrent lay-
ers has proved to be successful and is commonly used in practice by applying dropout
to recurrent connections in a way that can preserve long-term memory (Labach et al.
2019). In previous studies, static MC dropout was used throughout their experiments,
which suffers the model’s robustness toward the effect of anomalies. Given that prob-
abilistic models still require an overall great accuracy of their forecasts, optimizing
the uncertainty in prediction intervals remains a challenging question

6 Conclusion

We propose an anomaly-aware time series prediction framework, namely AA-
Forecast, to capture and leverage the effect of extreme events and anomalies for the
time series prediction task. It features a novel anomaly decompositionmethod that also
extracts the essential features of the data. We also proposed an anomaly-aware model
to leverage the extracted anomalies through an attention mechanism. Moreover, we
reduced the uncertainty of the network without any further training so that the predic-
tion uncertainty is minimal through the testing state. We compare our framework with
several statistical and deep learningmodels using three real-world time series datasets.
The results show that the AA-Forecast framework outperforms these models in pre-
diction error and uncertainty. For future work, the prediction performance could be
further improved if we target specific groups of neurons (e.g., the neurons containing
unnecessary details of the time series dynamics) for dynamic dropout optimization.
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