
Data Placement for Multi-Tenant Data
Federation on the Cloud

Ji Liu ,Member, IEEE, Lei Mo ,Member, IEEE, Sijia Yang, Jingbo Zhou, Shilei Ji,

Haoyi Xiong , Senior Member, IEEE, and Dejing Dou , Senior Member, IEEE

Abstract—Due to privacy concerns of users and law enforcement in data security and privacy, it becomes more and more difficult to

share data among organizations. Data federation brings new opportunities to the data-related cooperation among organizations by

providing abstract data interfaces. With the development of cloud computing, organizations store data on the cloud to achieve elasticity

and scalability for data processing. The existing data placement approaches generally only consider one aspect, which is either

execution time or monetary cost, and do not consider data partitioning for hard constraints. In this paper, we propose an approach to

enable data processing on the cloud with the data from different organizations. The approach consists of a data federation platform

named FedCube and a Lyapunov-based data placement algorithm. FedCube enables data processing on the cloud. We use the data

placement algorithm to create a plan in order to partition and store data on the cloud so as to achieve multiple objectives while

satisfying the constraints based on a multi-objective cost model. The cost model is composed of two objectives, i.e., reducing monetary

cost and execution time. We present an experimental evaluation to show our proposed algorithm significantly reduces the total cost

(up to 69.8%) compared with existing approaches.

Index Terms—Data federation, cloud computing, data sharing, data placement, multi-objective

Ç

1 INTRODUCTION

DATA sharing is the first step for the data-related collabo-
rations among different organizations [1], for example,

joint modeling with data from multi-party. Meanwhile,
direct sharing of raw data with collaborators is difficult due
to big volume and/or ownership [2], [3]. Data federation [4]
virtually aggregates the data from different organizations,
which is an appropriate solution to enable data-related col-
laborations without direct raw data sharing. Based on cloud
service, data federation works as an intermediate layer to
establish an abstract data interface. It provides a virtual
data view, on which the involved organizations can collabo-
ratively store, share and process data.

As high efficiency and low cost make it possible to lease
resources, e.g., computing, storage, and network, at a large
scale, a growing number of organizations tend to outsource
their data onto the cloud. With the pay-as-you-go model,
cloud computing (cloud) brings convenience to the organi-
zations to store and process a large amount of data. Cloud
services bring a large number of resources at different
layers. A Virtual Machine (VM) is an emulator of a com-
puter, which can be viewed as a computing node in a net-
work [5]. Through the data storage services, unlimited data
can be stored on the cloud. Cloud providers promise to pro-
vide three features, i.e., infinite computing resources avail-
able on-demand, dynamic hardware resource provisioning
in need, machines and storage paid and released as
needed [6]. Dynamic provisioning enables cloud tenants/
users to construct scalable systems with reasonable cost on
the cloud [7]. With these features, the scientific collaboration
on the cloud among different organizations becomes a prac-
tical solution.

Despite the advantages of cloud computing, data security
issue on the cloud tends to be serious. When the data is
stored on the cloud, it is crucial to keep confidentiality. Only
the authorized tenants/users should have access to the
data [8]. Encryption is a conventional way to keep the data
confidential, such as identity-based encryption [9]. In addi-
tion, the isolation techniques [10], which provide secure exe-
cution spaces for different jobs with specific access controls,
are also used to control the accessibility to the data on the
cloud. A job is composed of a data processing program or a
set of data processing programs to be executed on the cloud
in order to generate new knowledge from the input data.
During the scientific collaboration based on the data stored
on the cloud, the combination of encryption algorithms and

� Ji Liu, Haoyi Xiong, and Dejing Dou are with Big Data Lab, Baidu Inc.,
Beijing 100085, China.
E-mail: {jiliuwork, xhyccc}@gmail.com, liuji04@baidu.com.

� Lei Mo is with the School of Automation, Southeast University, Nanjing
211189, China. E-mail: lmo@seu.edu.cn.

� Sijia Yang is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China. E-mail: anneyang_1230@126.com.

� Jingbo Zhou is with Business Intelligence Lab, Baidu Inc., Beijing 100085,
China. E-mail: zhoujingbo@baidu.com.

� Shilei Ji is with Security Department, Baidu Inc., Beijing 100085, China.
E-mail: jishilei@baidu.com.

Manuscript received 7 March 2021; revised 21 November 2021; accepted 14
December 2021. Date of publication 20 December 2021; date of current version
7 June 2023.
This work was supported in part by the National Key R&D Program of China
under Grant 2018YFB1402600, in part by the Fundamental Research Funds
for the Central Universities under Grant 2242021R10113, in part by Southeast
University “Zhishan Scholars” under Grant 2242021R40003, and in part by
the Natural Science Foundation of Jiangsu Province under Grant BK20210218.
(Corresponding author: Ji Liu.)
Recommended for acceptance by J. Wang.
Digital Object Identifier no. 10.1109/TCC.2021.3136577

1414 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

2168-7161 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0002-1119-7617
https://orcid.org/0000-0002-1119-7617
https://orcid.org/0000-0002-1119-7617
https://orcid.org/0000-0002-1119-7617
https://orcid.org/0000-0002-1119-7617
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0003-2949-6874
https://orcid.org/0000-0003-2949-6874
https://orcid.org/0000-0003-2949-6874
https://orcid.org/0000-0003-2949-6874
https://orcid.org/0000-0003-2949-6874
mailto:jiliuwork@gmail.com
mailto:xhyccc@gmail.com
mailto:liuji04@baidu.com
mailto:lmo@seu.edu.cn
mailto:anneyang_1230@126.com
mailto:zhoujingbo@baidu.com
mailto:jishilei@baidu.com

isolation techniques can be utilized to keep the confidential-
ity and security of the data on cloud.

When using the cloud services, tenants/users have to
pay for them. For instance, when tenants/users directly
store their data on the cloud, they would be charged for the
cloud storage service. Widely used cloud service providers,
such as Amazon Web Services (AWS) cloud,1 Microsoft
Azure cloud2 and Baidu cloud,3 provide different data stor-
age types, e.g., hot data storage, data storage with low fre-
quency, cold data storage, and archive data storage, as data
storage services. The cost of data storage on the cloud varies
from type to type. In order to reduce the monetary cost to
store and to process the data on the cloud, it is necessary to
choose a proper data storage type based on a data place-
ment algorithm. However, the job execution frequency is
not well exploited while constructing the data placement
algorithms for the data storage on the cloud. In addition,
existing approaches cannot exploit data partitioning techni-
ques to satisfy multiple constraints.

There are multiple constraints for the data processing on
the cloud. For instance, when a user requires that the execu-
tion of a job should be within a time period, there is a hard
time deadline. When a user has a budget limit for the data
processing, there is a hard monetary budget for the execu-
tion of jobs. In addition, when the system is stable, the jobs
can be continuously executed. Otherwise, there may be stor-
age errors during the execution when the accumulated
stored data exceed the storage capacity. Thus, the system
stability is critical as well.

In this paper, we propose a solution to enable data proc-
essing on the cloud for scientific collaboration among differ-
ent organizations. The solution consists of a secure data
processing platform named FedCube, a multi-objective cost
model, and a Lyapunov-based data placement algorithm.
The main contributions of this paper are:

� The FedCube platform.We propose a cloud platform,
i.e., FedCube. FedCube enables secure data process-
ing with the encrypted data stored on the cloud for
collaboration among different organizations.

� A data placement problem formulation. We formu-
late the data placement problem based on a multi-
objective cost model and constraints. The multi-
objective cost model consists of monetary cost and
execution time. The constraints include hard execu-
tion time deadline, hard monetary budget, and sys-
tem stability constraint.

� A Lyapunov-based data placement algorithm. We
use the algorithm to create a data storage plan based
on the cost model in order to reduce both monetary
cost and the execution time of jobs with the consider-
ation of constraints while exploiting data partition-
ing techniques.

� An extensive experimental evaluation based on a
simulation and a widely used benchmark, i.e., Word-
count, and a real-life data processing application for
COVID-19 [11]. The simulation and the experiments

are carried out based on a widely used cloud, i.e.,
Baidu cloud.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 presents the system design
of the secure data processing platform. Section 4 presents the
data placement systemmodel, proposes a cost model, shows
the hard constraints, and defines the problem. Section 5 pro-
poses the Lyapunove-based data placement algorithm based
on the cost model. Section 6 shows the experimental results.
Finally, we conclude the paper in Section 7.

2 RELATED WORK

Lyapunov optimization is widely used to optimize the sys-
tem while ensuring system stability. For instance, Lyapunov
optimization is exploited to gain profit [12], to ensure the
Quality of Service [13] and the time average sensing util-
ity [14]. However, the aforementioned work focuses on a
single objective besides the system stability and does not
consider the task or data partitioning for satisfying multiple
constraints. In this paper, we combine the Lyapunov opti-
mization with multiple objectives for data placement.

Data placement is critical to both the monetary cost and
the execution time of jobs. In order to reduce the execution
time, data transfer can be reduced based on graph partition-
ing algorithm [15]. In addition, the data dependency among
different jobs can be exploited to reduce the time and mone-
tary cost to transfer data [16]. However, these methods only
consider one objective, i.e., reducing execution time. They
cannot be applied to place the data in different storage types
on the cloud. A weighted function of multiple costs can be
used to achieve multiple objectives, which can generate a
Pareto optimal solution [17], while the authors do not con-
sider the cost to store data on the cloud or hard constraints.
Load balancing algorithms [18] or dynamic provisioning
algorithms [19] are proposed to generate an optimal provi-
sioning plan in order to minimize the monetary cost while
they do not consider the data storage types on the cloud.
The storage type of the best performance can be selected to
store data [20] while the economic storage type can be
selected [21]. However, these two methods cannot address
multiple objectives. In this paper, we propose an algorithm
to achieve multiple objectives by placing data into various
data storage types while satisfying hard constraints.

In order to handle a multi-objective problem, there are
basically two types of solutions, i.e., a priori and a posteri-
ori [17], [22]. In this paper, we use an a priori method, where
the preference information is provided by the users, and
then the best solution is produced. Our approach is based
on a multi-objective scheduling algorithm focusing on mini-
mizing a weighted sum of objectives. The advantage of such
approach is that the scheduling is automatically guided by
predetermined weights. In contrast, a posteriori methods
produce a Pareto front of solutions without predetermined
preference information [22]. Each produced solution is bet-
ter than the others with respect to at least one objective, and
users need to choose one from the produced solutions,
which corresponds to user interference. In this paper, we
assume that users can determine the value for the weight of
each objective. a priori methods can enable us to produce
optimal or near-optimal solutions without user interference

1. https://aws.amazon.com/
2. https://azure.microsoft.com/en-us/
3. https://cloud.baidu.com/

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1415

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

at run-time. Finally, when the weight of each objective is
positive, the minimum of the weighted cost function is
already a Pareto optimal solution [23], [24] and our pro-
posed approach can generate a Pareto optimal or near-opti-
mal solution with the predefined weights. Thus, we do not
consider a posteriorimethods in this paper.

Data security is of much importance to the cloud users.
In order to protect data security, data accessibility is con-
trolled by attributing different levels of permission to avoid
unauthorized or malicious access to data on the cloud [25].
In addition, encryption techniques [26], [27] and distributed
data storage plan based on data partitioning [28], [29], [30]
can be exploited. Federated learning is proposed to train a
model while ensuring data privacy [31], yet it is not applica-
ble to the general data processing among different organiza-
tions on the cloud. In addition, secure separated data
processing spaces [10] are proposed to ensure the access
control and privacy of data. The separated data processing
spaces are disconnected from the public network, which
ensures that the confidentiality and the security of data
within the local network. Out proposed platform, i.e., Fed-
Cube, not only provides different data access controls for
different tenants/users but also exploits the secure sepa-
rated data processing spaces to ensure the security and the
confidentiality of the data.

3 SYSTEM DESIGN

In this section, we propose a secure data processing plat-
form named FedCube. First, we explain the architecture of
the platform. Then, we present the life cycle of users’
accounts and jobs to be executed.

3.1 Architecture

The FedCube platform is a data federation platform that pro-
vides tenants/users with secure data processing service on
the cloud. Tenants/users can upload their data onto the plat-
form and execute the self-written programs on Baidu cloud.
In addition, tenants/users can leverage the data from other
organizations for their own data processing jobs, as long as
they get permission from the data owners. We illustrate the
architecture of the platform and explain the functionalities of
each module in this section. As shown in Fig. 1, the func-
tional architecture of the platform consists of fourmodules:

3.1.1 Environment Initializer

The environment initializer creates the user account and its
execution space on the coordinator node. The created user
account is used for the user’s security configuration, e.g.,

the access permission to certain data from another user. The
user account is also associated with secure execution spaces
for the execution of submitted jobs in the cluster. The secure
execution space is a working space without a connection to
any public network, which can ensure the confidentiality
and the security of the data within the local network.

As shown in Fig. 2, multiple clusters can be dynami-
cally created by the environment initializer module when
the execution of jobs is triggered. Each cluster consists of
several computing nodes, i.e., VMs on the cloud. The
coordinator node coordinates the execution among differ-
ent clusters for all users. The user has access to the plat-
form through the coordinator node, which is connected
to the public Internet. The computing nodes in each clus-
ter are only interconnected with the coordinator node
through the local network on the cloud. Each computing
node is created based on the image [32] indicated by the
user, which contains necessary tools for the execution of
her jobs. An image is a serialized copy of the entire state
of a VM stored on the cloud [32].

3.1.2 Data Storage Manager

The data storage manager creates a data storage account
and storage buckets on the cloud for a user. A storage
bucket is a separated storage space to store the data with its
own permission strategy. The data storage account is used
to transfer data between the platform and the user’s devices,
e.g., computer. Each account is associated with five buckets,
i.e., user data bucket, user program bucket, output data
bucket, download data bucket, and execution space bucket.
Each account has an independent Authorization Key (AK)
and Secret Key (SK), with which the tenants/users can send
or retrieve the data stored in the buckets. In addition, the
access permission strategy varies from bucket to bucket. For
instance, the user has read and write permission on the user
data bucket and the user program bucket while she only
has the read permission on the download data bucket. A
user can store data in the user data bucket while she can
submit self-written codes to the user program bucket. The
tenants/users do not have read or write permission on the
output data bucket and the execution space bucket. After
the execution of the program generated based on the sub-
mitted codes, the output data is stored in the output data
bucket. After the confidentiality review of the output data,
the output data is transferred to the download data bucket.
The review is carried out by the owner of the input data of
the job in order to avoid the risk that the raw data or sensi-
tive information appears in the output data of the job. The
execution space bucket is used to cache intermediate data of

Fig. 1. The functionality architecture of the FedCube platform.
Fig. 2. Infrastructure architecture of the FedCube platform.

1416 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

a job, which can be useful for the following execution in
order to reduce useless repetitive execution [33].

3.1.3 Job Execution Trigger

The job execution trigger starts the execution of the job in a
cluster. A user can upload the user-written codes onto the
platform through a web portal. Then, she can start the execu-
tion of the program using the job execution trigger. Once the
execution of the program is triggered, a cluster is created,
deployed, and configured (see details in Section 3.1.1). After-
ward, the execution of the job is performed in the computing
nodes of the cluster. When several jobs start simultaneously
in the same cluster, the job execution trigger creates the same
number of execution spaces as that of jobs in order to enable
parallel execution without conflict. When the input data of a
program consists of the data from other data owners, the cor-
responding data interfaces are used in order to avoid direct
raw data sharing. Let us take two tenants/users as example:
User U1 and User U2. A data interface (I1) is defined by the
data owner (User U1), which is associated with the data (D1)
on the platform.When UserU2 gets the permission to useD1,
the program generated based on the submitted codes of User
U2 can process the data D1 using the Interface I1. The inter-
mediate data stored in the execution bucket can also be used
when the job needs the results of the previous execution.

3.1.4 Security Module

In the platform, we use four mechanisms to ensure the secu-
rity of the data. The first mechanism is to encrypt the data
before storing it on the cloud. The encryption is based on
the Rijndael encryption algorithm [34]. The second mecha-
nism is to separate the computing nodes from the public
network, e.g., Internet, which ensures that no data commu-
nication is allowed between the clusters and outside devi-
ces, e.g., servers, on the cloud. The third mechanism is a
uniformed data access control. When a user applies for the
permission of the data owned by another user, a data access
interface is provided by the data owner instead of direct
raw data sharing. The last mechanism is the audition of the
codes and output data by data owners, which ensures that
no data is leaked from output data. Through these mecha-
nisms, data confidentiality and security are ensured by the
data interface defined by the data owner while ensuring
efficient cooperation among different organizations.

3.2 Life Cycle

In order to present the interactions among users, the plat-
form, and the job execution on the platform, we present the
account life cycle and job life cycle. The life cycle describes
the state transition of a user account or a job on the platform.
We assume that there are n scientific collaborators. Each col-
laborator has private data, which requires keeping confi-
dentiality and security. Through the life cycle, we present
how n collaborators process the data on the platform.

3.2.1 Account Life Cycle

The account life cycle consists of three phases, i.e., account
creation, data processing, and account cleanup. First, the
account related to the user of the platform is created. Then,
the user can process the data on the platform. Finally, when
the user no longer needs the platform, the data related to
the account is removed.

Account Creation Phase. When a new user needs to use the
platform, we create an account and configure the platform
using the environment initializer module as shown in Fig. 1.
For the n collaborators in the above scenario, we create n
accounts (Ut with t representing the number of the collabo-
rator) for each scientific collaborator on the platform. First,
the job execution trigger is deployed for each user in the
coordinator node. Then, the data storage manager creates a
storage account and five storage buckets (see details in Sec-
tion 3.1.2) for each user. Afterward, the environment initial-
izer deploys the security module for each user. The security
module contains the encryption and decryption information
for each user. Please note that the encryption and decryp-
tion information is different for different users.

Data Processing Phase. After the account creation, data
processing jobs can be carried out on the platform. Before
processing the data, each user uploads her own data and
the data interface file to the user data bucket. As shown in
Fig. 3, if User Ui needs to exploit the data from another
Users Uj, User Ui can apply for the permission. Once User
Ui gets the permission from User Uj, the user also gets the
necessary information, e.g., the mock data, to access the
data using the corresponding data interface. The mock data
contains the data schema of the raw data and some ran-
domly generated examples, while the raw data is never
shared with the users. User Ui may use the data from sev-
eral other tenants/users at the same time. Then, User Ui can

Fig. 3. Job execution workflow.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1417

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

submit the codes to process data. In order to process data,
User Ui triggers the execution of a job related to the submit-
ted codes (see details in Section 3.2.2), which corresponds to
the execution of the job (ji with i representing the number
of the execution) on the platform. During the execution of a
job, the intermediate data generated from different execu-
tion of the job can be directly used. After the execution and
the review of the output data, user Ui can download the out-
put data of Job ji from the user download bucket.

Account Cleanup Phase. When the user no longer needs
the platform, the corresponding data, storage buckets, and
accounts are removed from the platform by the environ-
ment initializer module.

Initialization Phase.

3.2.2 Job Life Cycle

The job life cycle consists of four phases, i.e., initialization,
data synchronization, job execution, and finalization.

The initialization phase [35] is to prepare the environment
to execute a job on the platform. The preparation contains
three steps: provisioning, deployment, and configuration.
First, VMs are provisioned to the job as computing nodes.
There are two cases where existing VMs can be provisioned
to the job. The first case is that there are enough live comput-
ing nodes on the platform corresponding to the execution of
the same or the other jobs of the same user. The second case is
that there are enough live computing nodes for the programs
of other tenants/users, and all the related tenants/users
allow sharing computing nodes. Otherwise, the environment
initializer module dynamically creates new VMs as comput-
ing nodes, which contain necessary tools for the execution of
the job. Then, in order to execute the job, a proper execution
space is deployed on the allocated VMs. In order to enable
data access, the execution space is configured in each node.
For instance, the AK and SK files are transferred into the com-
puting nodes in order to enable data synchronization.

Data Synchronization Phase. During the data synchroniza-
tion phase [36], the data storage module synchronizes the
data or data interfaces stored on the cloud. In addition, the
scripts or the files corresponding to the submitted codes are
also transferred to the execution space created in the initiali-
zation phase.

Job Execution Phase. The execution phase [35] is the period
to execute jobs in the execution space of corresponding VMs.
The execution frequency of each job can bedynamicallymoni-
tored by the platform to compute the cost of data storage. The
data, including newly generated intermediate data, is dynam-
ically placed with appropriate storage types with small cost
according to the method presented in Section 5. As shown in
Fig. 3, after synchronizing the data from buckets, the program
corresponding to the submitted codes processes the input
data. The execution can be performed in a single computing
node or multiple computing nodes in order to reduce the
overall execution time. After the execution, the output data is
transferred to the output bucket of the user. Once the data is
reviewed and approved by the data owners of the input data,
it is encrypted by the security module and is transferred to
the download bucket to be accessed by the user.

Finalization Phase. In the finalization phase [37], the data
storage manager uploads the encrypted intermediate of the

job. Afterward, the environment initializer module removes
the corresponding execution space(s). If a node does not
contain any execution space, the node is released, i.e.,
removed, by the environment initializer, in order to reduce
the monetary cost to rent the corresponding VMs.

4 MULTI-OBJECTIVE COST MODEL AND

PROBLEM FORMULATION

In this section, we first present the system model for data
placement. Then, we propose a cost model based on two
costs, i.e., monetary cost and execution time. Afterward, we
present the data placement constraints, i.e., hard execution
time constraints and the hard monetary budget constraints.
Finally, we define the problem to address in the paper.

4.1 Data Placement System Model

The system model for data placement is shown in Fig. 4. In
the FedCube platform, we assume that the execution of jobs
generates intermediate data at time slot t, which may be
used as input data in the following time slots, e.g., tþ x
with x > 0. Then, the intermediate data should be placed
with other input data. Each job has a queue to store the gen-
erated intermediate data, and we consider N data storage
spaces, which correspond to N storage types with diverse
data access speeds and diverse prices to store data. Each
data set can be placed to one or multiple data storage types.
In order to place a data set to multiple storage types, a data
set can be partitioned into several chunks, and each chunk
is placed to a data storage type. We assume that the valid
time of data set di placed at storage type sj is Tmaxði;jÞ. If data
set di is not accessed by any job within Tmaxði;jÞ, the data set
will be removed from the storage space of the platform.
When there is a data set generated during the execution of a
job or when a job is executed, all the input data is placed
again. When the input data is being replaced, its original
corresponding storage type is kept until a newly placed
storage type is associated.

4.2 Cost Model

Inspired by [17], we propose a multi-objective cost model.
The cost model is composed of monetary cost and time cost
(i.e., the execution time of a job). In order to find a storage
plan, we need a cost model to estimate the cost of storing
the input data for the execution of jobs. The cost model is
generally implemented in the data storage module and
under a specific execution environment. In the case of this
paper, the execution environment is the FedCube platform.
The origin of parameters mentioned in this section is

Fig. 4. System model for data placement.

1418 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

summarized in Table 1. We assume that there are K jobs on
the platform.

The total cost to execute a set of jobs with a data place-
ment plan at time slot t is defined as the sum of the total
cost of all the jobs

TotalCostðPlan½t�Þ ¼
XK
k¼1

Costðjobk; Plan½t�Þ; (1)

where Plan½t� represents a data placement plan of the data
sets related to the set of jobs at time slot t, and jk represents
the kth job. In the rest of this paper, the total cost represents
the normalized cost to execute a set of jobs with a data
placement plan per time unit. Plan½t� is a matrix of data
placement variables, which can be expressed by the follow-
ing formula:

Plan½t� ¼

p0;0½t� p0;1½t� . . . p0;n½t�
p1;0½t� p1;1½t� . . . p1;n½t�

.
.

. . .

pm;0½t� pm;1½t� . . . pm;n½t�

2
66664

3
77775; (2)

where pi;j½t� represents that data set di is placed to storage
type sj, m represents the number of input and intermediate
data sets, and n represents the number of storage types.
When pi;j½t� ¼ 0, data set di is not placed to storage type sj;
when pi;j½t� ¼ 1, data set di is directly placed to storage type
sj; When 0 � pi;j½t� � 1, data set di is partitioned and the
part corresponding to pi;j½t� is placed to storage type sj.

The total cost to execute a job is defined by

Costðjobk; Plan½t�Þ ¼ wm �Mnðjobk; Plan½t�ÞÞ � fðjobkÞ
þ wt � Tnðjobk; Plan½t�Þ; (3)

where Tnðjobk; Plan½t�Þ and Mnðjobk; Plan½t�Þ are the normal-
ized time cost and monetary cost, respectively, and they can
be defined by Formulas (4) and (9); jobk represents the kth

job and Plan½t� represents the data placement plan at time
slot t; wt and wm represents the importance of the execution
time and the monetary cost of the job. Defined by the user,
wt and wm should be positive values that meet the con-
straints: 0 � wt � 1, 0 � wm � 1, wt þ wm ¼ 1. fðjobkÞ

represents the average frequency of the job execution, which
can be dynamically measured according to the history exe-
cution before the job execution, e.g., daily, monthly, quar-
terly and yearly. Since the time cost and monetary cost are
normalized, neither of them has a unit. Please note that the
time cost refers to the execution time of Jobs once while the
hard monetary budget is related to the budget per time
period, e.g., a day or a month.

4.2.1 Time Cost

The normalized time cost is defined by the following for-
mula:

Tnðjobk; Plan½t�Þ ¼ Tðjobk; Plan½t�Þ
DTk

; (4)

where Tðj; Plan½t�Þ represents the total execution time of the
job and DTk represents the expected execution time (set by
the user) of Job jobk. Please note that the execution time
Tðj; Plan½t�Þ represents the time to execute jobk once. The
desired execution time could be larger or smaller than the
real execution time Timeðj; Plan½t�Þ while it should be larger
than a limit defined by the FedCube platform, e.g.,
1=20 � SETk with SETk representing the sequential execu-
tion time of Job jobk with one computing node, in order to
avoid the unfairness among users. The total execution time
consists of three parts, which are defined by

Tðjobk; Plan½t�Þ ¼ InitTðjobkÞ þDTTðjobk; Plan½t�Þ
þ ETðjobkÞ; (5)

where InitTðjobkÞ represents the Time to Initialize the com-
puting nodes for Job jobk; DTTðjobk; Plan½t�Þ represents the
Time to Transfer the Data from the cloud storage service to
computing nodes; ETðjobkÞ represents the Execution Time
of Job jobk. The initialization of the computing nodes for Job
jobk can be specified by the user or realized by the platform,
which is out of the scope of this paper while the time can be
calculated based on Job jobk, e.g., nk �AIT with nk repre-
senting the number of computing nodes and AIT represent-
ing the average time to initialize a computing node. The
data transfer time can be calculated based on the size of the

TABLE 1
Description of Parameters

Abbreviation Parameter Meaning Origin

DT DesiredTime The estimated execution time to execute a job UD
DM DesiredMoney The estimated monetary cost to execute a job UD
TDL TimeDeadline The hard execution time deadline to execute a job UD
MB MoneyBudget The hard monetary budget to execute a job UD
AIT averageInitializationTime The average time to initialize a computing node Measure
CSP ComputingSpeedPerCPU The average computing performance of each computing node Measure
WL workload The workload of a job Measure
ak ak The percentage of the workload of Job k that can be executed in parallel Measure
speed speed The data transfer speed for a type of data storage cloud
SP StoragePrice The monetary cost to store data with a storage type cloud
RP ReadPrice The monetary cost to read data from a cloud storage service cloud
VMP VMPrice The monetary cost to use a VM cloud

“Abbreviation” represents the abbreviation of the parameters. “Origin” represents where the value of the parameter comes from. UD: that the parameter value is
defined by users; Measure: that the parameter value is estimated by the user with the job in a cloud environment; Execution: measured during the execution of
job in cloud; cloud: the parameter value is obtained from the cloud provider.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1419

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

input data of Job jobk and the data placement plan as fol-
lows:

DTTðjobk; Plan½t�Þ ¼
XN
j¼1

X
i2datak

sizeðdiÞ
speedj

� pi;j½t�; (6)

where speedj represents the speed to transfer data from data
storage type j to computing nodes. As explained in Sec-
tion 4.1, N represents the total number of storage types on
the FedCube platform. According to the Amdahl’s law [38],
the execution time of Job j can be estimated by the following
formula [17] when the impact of data communication can be
ignored with n computing nodes

ETðjobkÞ ¼ ½ak=nþ ð1�akÞ� �WLðjobkÞ
CSP

; (7)

where ak
4represents the percentage of the workload that

can be executed in parallel; n is the number of computing
nodes, which is configured by users while it should be less
than a limit, e.g., 20, defined by the FedCube platform;
WLðjÞ represents the workload of a job which can be mea-
sured by the number of FLOP (FLoat-point Operations) [39].
CSP is the average computing performance of each com-
puting node, which can be measured by the number of
FLOPS (FLoating-point Operations Per Second).

4.2.2 Monetary Cost

Normalized monetary cost is defined by the following for-
mula:

Mnðjobk; Plan½t�Þ ¼ Mðjobk; Plan½t�Þ
DMk

; (9)

whereMoneyðjobk; Plan½t�Þ is the financial cost to rent VMs as
computing nodes on the cloud. Please note that themonetary
cost Moneyðjobk; Plan½t�Þ represents the total monetary cost
to execute jobk within a time period, e.g., a month.DMk rep-
resents the expected execution monetary cost of Job Jobk,
which can be configured by the user while it should be larger
than or equal to a limit defined by the FedCube platform,
i.e., SMCk with SMCk representing the monetary cost of Job
jobk with one computing node, in order to avoid the unfair-
ness among users. DMk can be bigger or smaller than the
real monetary cost Moneyðjobk; tÞ. Moneyðjobk; Plan½t�Þ can
be estimated based on the following formula:

Mðjobk; Plan½t�Þ ¼ EMðjobk; Plan½t�Þ
þDSMkðjobk; Plan½t�Þ
þDAMkðjobk; Plan½t�Þ; (10)

where EMðjobk; Plan½t�Þ represents the Monetary cost to use
the computing nodes to Execute the job; DSMðjobk; Plan½t�Þ
represents the Monetary cost to Store the Data on the cloud

storage service; DAMðjobk; Plan½t�Þ represents the Monetary
cost to Access to the Data. EMðjobk; Plan½t�Þ can be esti-
mated by the following formula:

EMðjobk; Plan½t�Þ ¼ VMPðjobkÞ � nk

�½Tðjobk; Plan½t�Þ � InitTðjobkÞ�; (11)

where VMPðjobkÞ represents the average monetary cost of a
VM for the execution of Job j; nk represents the number of
computing nodes to execute the job; Tðjobk; Plan½t�Þ and
InitTðjobkÞ are defined in Formula (5).

We allocate the storage monetary cost of a data set to the
jobs based on the workload. DSMðj; Plan½t�Þ is defined by
the following formula:

DSMðjobk; Plan½t�Þ ¼ WLðjobkÞPK
l¼1ðWLðjoblÞ � fðjoblÞÞ

�

XN
j¼1

X
i2datak

ðSPj � sizeðdiÞ � pi;j½t�Þ; (12)

where WLðjobkÞ represents the workload of job jobk;
datasetðjÞ represents the data sets that job j uses; jobðiÞ rep-
resents the jobs that takes data i as input data; SPðsiÞ repre-
sents the monetary cost to store the data with the storage
type si, which is defined in the data placement plan plan½t�,
on the cloud; sizeðdiÞ represents the size of the input data di.

DAMðjobk; Plan½t�Þ is defined by the following formula:

DataAccessMoneyðjobk; Plan½t�Þ
¼
X
j¼1

X
i2datak

ðRPj � sizeðdiÞ � pi;j½t�Þ; (13)

where RPj represents the monetary cost to read data di from
the cloud storage service; sizeðdiÞ represents the size of the
input data di of Job jobk.

4.3 Data Placement Constraints

In this section, we present the constraints of data placement.
First, we present the hard execution time and monetary
budget constraints for each job. Then, we present the system
stability constraint based on Lyapunov optimization.

We assume that there are hard time deadline and hard
monetary budget for each job, which can be formulated as
follows:

Tðjobk; Plan½t�Þ � TDLk; 8k 2 ½0; K�; (14)

Mðjobk; Plan½t�Þ � MBk; 8k 2 ½0; K�; (15)

where Tðjobk; Plan½t�Þ and Mðjobk; Plan½t�Þ are defined in
Formulas (5) and (10) respectively, TDLk represents the
hard execution time deadline, MBk represents the hard
monetary cost Budget, and Jobs represents the set of jobs in
the system.

For storage spaces, as shown in the right part of Fig. 4, we
use SjðtÞ to denote the set of data sets placed in the data
storage space of Type j. Therefore, the dynamic set is
defined as follows:

Sjðtþ 1Þ ¼ max½SjðtÞ � rjðtÞ; 0� þ
XM
i¼1

pi;j½t�; (16)

4. ak can be obtained by measuring the execution time of executing
the job k twice with different numbers of computing nodes [17]. For
instance, assume that we have t1 for m1 computing nodes and t2 for m2

computing nodes,

ak ¼ m2�m1�ðt2�t1Þ
m2�m1�ðt2�t1Þþm1�t1�m2�t2 (8)

1420 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

where rjðtÞ represents the data to be removed because of
time limit and

Pm
i¼1 pi;j½t� represents the newly placed data

sets to data storage type sj.
For jobs shown in the middle part of Fig. 4, we use Ji to

denote the set of data sets generated from the execution of
Job i. We have the following job data storage set defined as
follows:

Jkðtþ 1Þ ¼ max JkðtÞ �
XN
j¼1

X
i2datak

pi;j½t�; 0
" #

þGk½t�;

(17)

where datak represents the set of input data sets of Job k,
and Gk½t� represents the newly generated intermediate data
of Job k.

We exploit the Lyapunov optimization technique [40]
by considering both the set of data sets placed in the
data storage spaces and the job data storage sets. Let
DðtÞ ¼ ðSjðtÞ; JiðtÞ; j 2 f1; . . . ; ng; i 2 f1; . . . ; kg; t 2 f1; 2; . . . ; gÞ
denote all the data sets in time slot t. We have the following
constraint in order to ensure the stability of the system:

�D , lim
T!1

1

T

XT�1
t¼0

XN
j¼1

EfSjðtÞg þ
XK
k¼1

EfJkðtÞg
 !

< 1:

(18)

4.4 Problem Definition

The problem we address in the paper is a data placement
problem, i.e., how to choose a storage type to store the data
in order to reduce the expected total cost, which consists of
the monetary cost and the execution time of jobs, while sat-
isfying constraints, on the cloud. A job can be executed mul-
tiple times because the user-defined codes are updated, or
the parameters are updated [41]. As shown in Table 2, dif-
ferent data storage types of storage services on the cloud
correspond to different prices. The storage type with higher
expected data access frequency, e.g., Standard, has a higher
price and higher data access speed. The total cost to execute
a job once differs with different data placement plans. Thus,
the problem we address in this paper is how to find an opti-
mal data placement plan of all the data sets in order to
reduce the expected total cost to execute the jobs with differ-
ent execution frequencies based on a cost model. We define
the expected total cost as

CostðJobs; Plan½t�Þ ¼ lim
T!1

1

T

XT�1
t¼0

EfCostðJobs; Plan½t�Þg:

(19)

Then, the problem addressed in this paper can be formu-
lated as follows:

min CostðJobs; Plan½t�Þ

s.t.

pi;j½t� 2 ½0; 1�XN
j¼1

pi;j½t� ¼ 1;

Formulas ð14Þ; ð15Þ; and ð18Þ:

8>>>><
>>>>:

(20)

where Jobs represents the set of jobs in the system.
The data placement problem is a typical NP-hard prob-

lem [42]. Let us separate the data placement variables into
two parts, i.e., p0i;j and p00i;j. p0i;j is a continuous variable
between 0 and 1, which represents the partitioning of a data
set. p00i;j is a 0-1 integer, which is the scheduling decision.
Then, we have pi;j ¼ p0i;j � p00i;j. Then, the problem defined in
Formula (19) is a Mixed Integer Linear Programming
(MILP) problem, which is a proven NP-hard problem [43],
[44], [45]. In this case, the exhaustive search for an optimal
solution for p00i;j increases exponentially and the complexity
is OðNMÞ, which cannot be solved within a polynomial
time, with N representing the number of storage types and
M represents the number of data sets.

5 NEAR-OPTIMAL DATA PLACEMENT

In this section, we present a near-optimal data placement
approach based on Lyapunov optimization. Lyapunov opti-
mization is widely used to achieve optimization objectives
while ensuring the system stability [40], [46]. In order to
exploit Lyapunov optimization techniques, we first construct
a Lyapunov function and propose a Lyapunov-based algo-
rithm (LNODP) to perform the data placementwhile ensuring
system stability. Then, we propose a greedy approach to per-
form the near-optimal data placement while satisfying hard
deadlines. The greedy approach consists of three algorithms,
i.e., near-optimal data planning (NOD Planning), near-opti-
mal data placement, and data placement (NOD Placement)
with partitioning (NOD Partitioning). LNODP exploits NOD
Planning to generate a near-optimal data placement plan;
NOD Planning takes advantage of NOD Placement to choose
optimal data storage type when the hard constraints can be
satisfied, and NOD Placement uses NOD partitioning to gen-
erate a plan to partition the data in order to satisfy hard con-
straints when one data storage type does not work.

5.1 Lyapunov Optimization Based Data Placement

We define a Lyapunov function LðtÞ as follows:

LðtÞ¼D 1

2

XN
j¼1
½SjðtÞ�2 þ

XK
k¼1
½JkðtÞ�2

 !
: (21)

This function represents the data sets to be placed. Then, we
can define the derivative of the Lyapunov function as fol-
lows:

TABLE 2
The Monetary Cost to Store Data on the Cloud With Different Storage Types, i.e., Standard, Low frequency, Cold and Achieve

Standard Low frequency Cold Achieve

Expected data access frequency frequently < once per month < once per year � three years

Cost to store data (Dollar/GB/month) 0.0155 0.0113 0.0045 0.015
Cost to read data (Dollar/GB) N/A 0.0042 0.0085 0.12

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1421

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

~LðtÞ
~t

¼D EfLðtþ~tÞ�LðtÞjDðtÞg: (22)

We use the expectation to address the randomness of the
intermediate data generated by the execution of jobs and
the data placement actions. As to solve the problem defined
in Formula (20) requires the global information the
FedCube system, which is hard to predict or gather, we
transform the problem defined in Formula (20) to the fol-
lowing objective function, which is a greedy conversion
with limited local information:

min
~LðtÞ
~t

þ v � EfCostjDðtÞg
� �

s.t.

Tðjobk; Plan½t�Þ < TDLk; 8k 2 ½1; K�
Mðjobk; Plan½t�Þ < MBk; 8k 2 ½1; K�
pi;j½t� 2 ½0; 1�;

8><
>: (23)

where Tðjobk; Plan½t�Þ and Mðjobk; Plan½t�Þ are defined in
Formulas (5) and (10) respectively, TDLk represents the
hard execution time deadline, MBk represents the hard
monetary cost Budget, and the parameter v � 0 represents
the importance of the expected total cost compared with the
stability of the system.

Theorem 1. The objective function has the following upper
bound when~t ¼ 1:

~LðtÞ þ vEfCostðJobs; Plan½t�ÞjDðtÞg

� Lþ v
XK
k¼1

Ck

þ E
XN
j¼1

SjðtÞrjðtÞÞjDðtÞ
()

� E
XK
k¼1

JkðtÞGk½t�ÞjDðtÞ
()

þ E
XN
j¼1

XK
k¼1

X
i2datak

ðJkðtÞ � SjðtÞ þ vC0i;jÞpi;j½t�jDðtÞ
()

; (24)

with L defined in Formula (28), C defined in Formula (30),
and C0 defined in Formula (31).

Proof. First, we focus on the data stored in the job data
queue with the assumption that

PM
i¼1 pi;j½t� � dmax and

rjðtÞ � rmax

S2j ðtþ 1Þ � S2j ðtÞ

¼ max½SjðtÞ � rjðtÞ; 0� þ
XM
i¼1

pi;j½t�
 !2

�S2j ðtÞ

�
XM
i¼1

pi;j½t�
 !2

þðrjðtÞÞ2 � 2SjðtÞ rjðtÞ �
XM
i¼1

pi;j½t�
 !

� ðdmaxÞ2 þ ðrmaxÞ2 � 2SjðtÞ rjðtÞ �
XM
i¼1

pi;j½t�
 !

: (25)

Then, we have the similar results for the data storage
spaces with the assumption that

PN
i2datak;j¼1 pi;j½t� �

datamax, where datamax represents the maximum number
of data sets for any job, and Gk½t� � Gmax

k

J2kðtþ 1Þ � J2kðtÞ

¼ max½JkðtÞ �
XN

i2datak;j¼1
pi;j½t�; 0� þGk½t�

 !2

�J2kðtÞ

� ðGk½t�Þ2 þ
XN

i2datak;j¼1
pi;j½t�

 !2

� 2 � JkðtÞ
XN

i2datak;j¼1
pi;j½t� �Gk½t�

 !

� ðGmax
k Þ2 þ ðdatamaxÞ2

� 2 � JkðtÞ
XN

i2datak;j¼1
pi;j½t� �Gk½t�

 !
(26)

With Formulas (25) and (26), we have

~fLðtÞjDðtÞg

� Lþ E
XN
j¼1

SjðtÞðrjðtÞ �
XM
i¼1

pi;j½t�ÞjDðtÞ
()

þ E
XK
k¼1

JkðtÞ
XN

i2datak;j¼1
pi;j½t� �Gk½t�

 !
jDðtÞ

()
; (27)

L ¼ N

2
� ½ðdmaxÞ2 þ ðrmaxÞ2� þK

2
� ½ðGmax

k Þ2 þ ðdatamaxÞ2�:
(28)

The cost model presented in Section 4.2 can be rewrit-
ten as

EfcostðJobs; Plan½t�ÞjDðtÞg

¼
XK
k¼1

Ck þ E
XN
j¼1

XK
k¼1

X
i2datak

C0i;j;k � pi;j½t�jDðtÞ
()

; (29)

Ck ¼

vt � nk �AIT

DTk
þ vt

DTk
þ vm � VMPðjobkÞ � nk

DMk

� �

� ð
ak
n þ ð1þ akÞÞ �WLðjobkÞ

CSP

!
� fðjobkÞ; (30)

C0i;j;k ¼

vt

speedj �DTk
þ vm � VMPðjobkÞ � nk

speedj �DMk
þ vm � RPj

DMk

þ vm �WLðjobkÞ � SPjPK
l¼1ðWLðjobkÞ � fðjobkÞÞ �DMk

!

� sizeðdiÞ � fðjobkÞ (31)

Finally, we can take the expectation and add the total
cost, i.e., costðPlan½t�Þ to both sides of Formula (27) and
hence Theorem 1 is proven. tu
In order to solve the problem defined in Formula (20), we

minimize the upper bound of Theorem 24. As the status of
Time slot t can be observed in the system, we only need to
minimize the following element:

1422 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

E
XN
j¼1

XK
k¼1

X
i2datak

ðJkðtÞ � SjðtÞ þ vC0i;j;kÞpi;j½t�jDðtÞ
()

¼ E
XN
j¼1

XM
i¼1

C0i;jpi;j½t�jDðtÞ
()

; (32)

with C0i;j defined as

C0i;j ¼
X

k2Jobsi
ðJkðtÞ þ vC0i;j;kÞ � SjðtÞ; (33)

where Jobsi represents the set of jobs that process Data
set di.

Algorithm 1. Lyapunov-Based Near-Optimal Data Place-
ment

Input:D: A set of data sets;
T : Maximum number of iterations;
T 0: Maximum number of iterations for generating data place-

ment plans;
Plan½t�: data placement plan in Time slot t.

Output: Plan½tþ 1�: data placement plan in Time slot tþ 1.
1: D sort(D)
2: for t 2 T do
3: while not all data sets 2 D are placed and iter < T 0 do
4: Plan�½t� NearOptimalDataPlanning(Plan½t�)
5: for each Data set di inD do
6: for j 2 N do
7: p�i;j½t� getPlan(Plan�½t�, i, j)
8: if C0i;j � 0 and p�i;j½t� 6¼ 0 then
9: Set pi;j½tþ 1� ¼ p�i;j½t�
10: else
11: Set pi;j½tþ 1� ¼ 0
12: end if
13: end for
14: end for
15: end while
16: iter iterþ 1
17: end for
18: Update JkðtÞ and SjðtÞ

We design a Lyapunov-based approach to minimize For-
mula (32), as shown in Algorithm 1. First, we sort the data
sets based on C0i;j in descent order in order to minimize the
cost of the data set corresponding to high costs first (Line 1).
Then, for each data set, we use Algorithm 2 to find an opti-
mal data placement plan (Line 4). For each combination of
fi; jg (Line 5), if C0i;j � 0 (Line 8), we will update
pi;j½tþ 1� ¼ p�i;j (Line 9), otherwise, we will set pi;j½tþ 1� ¼ 0
(Line 11). Please note that the data set is placed with a data
placement plan that meets reasonable constraints based on
Algorithm 2 when C0i;j � 0. Otherwise, the placement plan
remains idle and will be set with a proper data placement
plan in later time intervals. When the data placement plan
of a data set is idle, the execution of related jobs is post-
poned until the placement plan is set in order to meet the
constraints. Please note that when the data in the system
exceed the capacity of the system or the given constraints
are not reasonable, the algorithm may not generate a proper
data placement plan that meets all the constraints.

5.2 Near-Optimal Data Placement Algorithm

Based on the multi-objective cost model, we propose a
greedy algorithm to generate a near-optimal data placement
plan while reducing the expected total cost to execute a set
of jobs on the FedCube platform as shown in Algorithm 2.
In the algorithm, for each Data set d, we first calculate the
total cost based on the cost model (Line 2). Then, we gener-
ate a near-optimal data placement plan by replacing Data
set dwhile keeping the other data sets based on Algorithm 3
(Line 3). Afterward, if the new data placement plan can
reduce the total cost according to the cost model, we update
the data placement plan if the new data placement plan cor-
responds to a smaller total cost (Lines 4 - 5).

Algorithm 2.Near-Optimal Data Planning

Input:D: A set of data sets;
Plan: data placement plan in Time slot t.

Output: Plan�: The near-optimal data placement plan of each
data d in data setDwith the minimum cost.
1: for each Data d inD do
2: costbefore calculateCost(Plan) ⊳ According to

Formula (1)
3: Plan0 getNearOptimalPlacement(d, Plan)
4: if CostðPlan0Þ < CostðPlanÞ then
5: Plan� Plan0

6: end if
7: end for

Algorithm 3.Near-Optimal Data Placement

Input: d: A data set;
Jobs: A set of jobs that process Data set d;
StorageTypeList: The list of storage types;
Plan: a data placement plan.

Output Plan�: The near-optimal data placement plan of Data
set d.

1: Plan� Plan
2: j� = getOptimalType(Plan, d, StorageTypeList)
3: TypesForTimeConstraints getTypesForTimeConstraint

(Plan, d, Jobs)
4: TypesForMonetaryConstraints getTypesForMonetary-

Constraint(Plan, d, jobs)
5: AvailableTypes TypesForTimeConstraints \ TypesForMonetary

Constraints
6: if j� 2 AvailableTypes then
7: For j 2 ½1; N� and pi;j 2 Plan�, set pi;j ¼ 1; j ¼ j�

0; j 6¼ j�

�
8: else
9: Plan� dataPlacementWithPartitioning(d, Plan, Jobs,

TypesForTimeConstraints,
10: TypesForMonetaryConstraints,)
11: endif

Algorithm 3 replaces Data set d in order to reduce the
total cost. First, we choose an optimal data storage type j�

based on the data placement plan by trying each data stor-
age type in storageTypeList (Line 2). Then, we choose a set
of possible storage type candidates that meet both the hard
time deadline constraint and hard monetary budget con-
straint (Lines 3 - 4). If the chosen data storage type j� is
within the set of storage type candidates, we will update the
data storage placement. If not, we will exploit Algorithm 4
to place the data set with data partitioning.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1423

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 generates a near-optimal data placement
plan with the consideration of data partitioning while meet-
ing the two constraints, i.e., the hard time deadline constraint
and the hard monetary budget constraint. First, if any of the
set of available data storage type candidates for the hard
time deadline constraint or hardmonetary budget constraint
is an empty set, we consider that the two constraints cannot
be met (Lines 2 and 3). If not, first, we choose an optimal type
(j1 for the time constraint and j2 for the monetary constraint)
within the set of candidates for each constraint by trying
each storage type (Lines 5 and 6). We define a possible area
as the range of parts of the data set to be placed at Type j1
while meeting both the two constraints. We can calculate the
possible area for each job and the intersection of the area for
all the related jobs (Lines 7 - 10). Given a related job jobk of a
data set and two data storage types (j1, j2), we can calculate
the possible area based on Formulas (1) - (13), (14) and (15),
and the calculated area is: maxf0; ag � pi;j1 � minfb; 1g
when c > 0, ormaxfa; bg � pi;j1 � 1when c < 0, with

a ¼ TDLk �ET ðjobkÞ � nk �AIT
sizeðdÞ

� speedj1 � speedj2
speedj2 � speedj1

� speedj1
speedj2 � speedj1

;

b ¼ MBk

c � sizeðdÞ �
VMP ðjobkÞ � nk � ET ðjobkÞ

c � sizeðdÞ
� VMP ðjobkÞ � nk

c � speedj2
� SPj2

c � sizeðdÞ �
RPj2

c � sizeðdÞ ;

c ¼ VMP ðjobkÞ � nk � 1

speedj1
� 1

speedj2

� �
þ d � ðSPj1 � SPj2Þ þ ðRPj1 �RPj2Þ;

d ¼ WLðjobÞPK
l¼1ðWLðjlÞ � fðjlÞÞ

;

where AIT represents the average initialization time, ET
represents the execution time, which can be calculated
based on Formula (7), SP represents the storage price, RP
represents the read price. Finally, if the final possible area is
an empty set, we consider that the two constraints cannot
be met (Lines 11 and 12). If not, we calculate the optimal
data partitioning by choosing a boundary of the area that
corresponds to a smaller total cost and update the data
placement plan (Lines 14 and 16).

5.3 Algorithm Analysis

Let us assume that we have M input data, N data storage
types, and each input data is related to K jobs on average.
Then, the search space for the problem we address is
OðNMÞ, which is the complexity of the brute-force method.
The complexity of ActGreedy algorithm [17] is
OðM �K �NÞ. Then, the complexity of LNODP is
OðT �M �K �NÞ (when there is no need to execute Algo-
rithm 4) or OðT �M �K2 �NÞ (when Algorithm 4 is exe-
cuted for each job), which is much smaller than OðNMÞ

when NM�1 > M �K2 � T (this is a general case). Please
note that we do not reduce the complexity of the problem
but reduce the complexity of the solution. The complexity
of Economic and Performance (see details in Section 6) is
OðM �MÞ. Although the complexity of LNODP is slightly
bigger than that of ActGreedy, Economic, or Performance, it
can generate near-optimal data placement plans while satis-
fying hard constraints.

Algorithm 4. Data Placement With Partitioning

Input: d: A set of data;
Jobs: A set of job that process Data set d;
StorageTypeList: The list of storage types;
TypesForTimeConstraints: A set of storage types that only
meet the hard execution time constraint;
TypesForMonetaryConstraints: A set of storage types that
only meet the hard monetary budget constraint;
Plan: a data placement plan.

Output: Plan�: The near-optimal data placement plan of each
data d;
Feasibility: If there is a data placement plan that meets the

two constraints
1: Plan� Plan½t�
2: if TypesForTimeConstraints ¼ ; or TypesForMonetary

Constraints ¼ ; then
3: Feasibility ¼ False
4: else
5: j1 getOptimalTypeForTimeConstraint(Plan, d, Jobs,

TypesForTimeConstraints)
6: j2 getOptimalTypeForMonetaryConstraint(Plan, d, Jobs,

TypesForMonetaryConstraints)
7: possibleArea [0, 1]
8: for j 2 [1, N] do
9: possibleArea possibleArea \ getArea(Plan, d, j1, j2,

Jobs)
10: end for
11: if possibleArea ¼ ; then
12: Feasibility ¼ False
13: else
14: p getOptimalPart(d, plan, Jobs, possibleArea)
15: For j 2 ½1; N� and pi;j 2 Plan�, set

16: pi;j ¼
p; j ¼ j1;

1� p; j ¼ j2;
0; else

8<
:

17: end if
18: end if

LNODP can generate a near-optimal result while satisfy-
ing the hard constraints in most cases. However, there are
two cases where LNODP cannot generate a data placement
plan to satisfy hard constraints for a job. First, when there is
no data storage type to store all the input data of a job while
satisfying both the hard time deadline and the hard mone-
tary budget. Second, when there is no combination of two
storage types that can satisfy both the hard time deadline
and the hard monetary budget. In these two cases, the user
should reset the hard constraints of the job in order to use
LNODP to generate data placement plans.

In order to analyze theworst case guarantee of the LNODP
algorithm, we focus on the case when the data is scheduled
according to the near-optimal data plan as explained in Line 9

1424 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

of Algorithm 1. The case explained in Line 11 of Algorithm 1
is ignored as the data is not scheduled in this case. The prob-
lem addressed in Algorithm 2 is a scheduling problem when
there is an optimal solution according to Algorithms 3 and 4.
When the data can be scheduled without being partitioned,
the solution is equal to the solution generated by a greedy
algorithm. As the cost function of the combination problem is
monotone, Algorithm 4 can generate an optimal combination
of the chosen storage types by Algorithm 3. Thus, when the
data needs to be partitioned while scheduling, the solution is
also equal to the solution generated by a greedy algorithm. As
the scheduling problem while minimizing a cost function is a
typical submodular problem as explained in [47], the worst
case guarantee of the LNODP algorithm becomes the worst
case guarantee of a greedy algorithm for a submodular, which
is e�1

e � f�, where e is the base of the natural logarithm and f�

represents the optimal solution [48].

6 EXPERIMENTATION

In this section, we first present the simulation to compare
the execution time of our proposed Lyapunov-based Near-
Optimal Data Placement (LNODP) algorithm and the brute-
force method. We consider four storage types, i.e., Standard,
Low frequency, Cold, and Archive, in our proposed algo-
rithm. These four storage types are provided by the storage
service on the Baidu cloud. Then, we compare the total cost
of four storage methods: LNODP, brute-force, Perfor-
mance [20], and Economic [21]. The brute-force method is to
search the minimum cost in the entire searching space,
which means that the result of brute-force is the optimal
solution. The Performance method [20] uses the storage
type that corresponds to the highest data transfer speed.
Economic [21] uses the storage type that corresponds to the
smallest price to store data. In addition, we compare our
algorithm with a simple adapted greedy algorithm, i.e.,
ActGreedy [17], to show that our algorithm can address
multiple hard constraints while ActGreedy only reduces the
total cost without considering the hard constraints. Then,
we present the comparison of the total cost among the four
storage methods using a widely used data processing
benchmark, i.e., Wordcount on Hadoop [49], and a real-life
data processing program for the correlation analysis of
COVID-19 [11] (COVID-19-Correlation), which is selected
from recent work related to COVID-19 [11], [50], [51]. In the

experimentation, we consider five execution frequencies
(daily, semimonthly, monthly, quarterly, and yearly) for
Wordcount and COVID-19-Correlation.

6.1 Simulation

In this section, we compare our proposed algorithm with
the brute-force method in terms of the execution time and
the total cost. We take 15 data sets with the average size
being 5.5 GB as the input data of jobs. We execute fifteen
jobs to process the input data. Each job is associated with
different data sets, including Wordcount, Grep, etc. Each
job is with different frequencies and different settings such
as DT , wt. The data sets include DBLP XML files [52] and
some data sets from Baidu. The DBLP XML file contains the
metadata, e.g., the name of authors, publishers, of com-
puter-based English articles. The comparison experiment
results are shown in Fig. 5.

Fig. 5 shows the result of the execution time of different
methods. In order to generate a data placement plan for six
data sets with fifteen jobs, the execution time of the greedy
algorithm is shorter than 0.0001s, while that of LNODP is
0.08s. When the number of the data sets augments, the exe-
cution time of the brute-force method increases exponen-
tially. When the number of data sets becomes 15, the
execution time of the brute-force method is 67839s, while
that of LNODP remains within 0.0001s.

Fig. 6 presents the comparison among four methods:
LNODP, brute-force, Performance, and Economic. LNODP
corresponds to the same total cost as that of the brute-force
method,which is up to 8.2% and 30.6% smaller than that of Per-
formance and Economic, respectively. The simulation experi-
ment shows that the result of our proposed algorithm is as
same as the brute-force method, which means the result of our
proposed algorithm is the optimal solution in these situations.

6.2 Wordcount

Hadoop [53] is a framework for parallel big data processing
on a cluster of commodity servers. Hadoop contains two
components, i.e., HDFS [54] and MapReduce. HDFS is a dis-
tributed file system with a master-slave architecture. Map-
Reduce is a programming model and implementation for
parallel data processing in a distributed environment. Map-
Reduce contains two phases, i.e., Map and Reduce. In the
Map phase, the input data is processed, and key-value pairs

Fig. 5. Execution time of greedy and brute-force.

Fig. 6. Comparison among four methods.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1425

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

are generated. In the reduce phase, the key-value pairs of
the same Key are processed.

Wordcount is a widely used benchmark, which counts
the frequency of each word in the input files. Wordcount
contains two steps, i.e., Map and Reduce. In the Map step,
< word; 1 > is generated for each work in the input data.
Then, the number of < word; 1 > is counted for each work
in the Reduce step. Finally, the frequency of each word is
calculated and stored in HDFS.

We deploy Hadoop on three computing nodes based on
the platform. Each node is a VM with one CPU core and 4
GB RAM. We use DBLP 2019 XML files of 6.04 GB as the
input data. We setDT as 1200 seconds andDM as 1 dollar.

First, we set the hard time deadline as 2,000 seconds and
10 dollars. Fig. 7 shows that our proposed algorithm, i.e.,
LNODP, significantly outperforms the baseline approach.
When the frequency is daily, the total cost corresponding to
different approaches is shown in Fig. 7a. Compared with
Economic, LNODP can reduce the total cost by 42.2%, 25.2%,
and 8.7%whenvt is 0, 0.5, and 0.9 respectively.When the fre-
quency is quarterly, LNODP can reduce the total cost by
44.3% compared with Performance when the vt is 0 as
Fig. 7b shows. LNODP can generate an optimal storage plan,
which significantly outperforms (the total cost is 31.7% and
7.2% smaller) Economic when vt is 0.5 and 0.9, respectively.
Fig. 7c presents the efficiency of our proposed algorithm
when the frequency is yearly. Compared with Performance,
our algorithm can reduce the total cost by 69.8%, 60.4% and
27.4%whenvt is 0, 0.5 and 0.9, respectively.

Fig. 7 presents that our algorithm can reduce the total
cost by up to 69.8% compared with Performance and up to
42.2% compared with Economic. As the execution fre-
quency of the job decreases, the advantage of our algorithm
becomes significant. The comparison of Figs. 7a, 7b and 7c
indicates that as the importance of time cost becomes big-
ger, i.e., vt, increases, the advantage of our proposed algo-
rithm becomes significant as well. This experiment also
shows that the result of our algorithm can generate the opti-
mal solution as the brute-force method.

Table 3 presents the execution with a strict hard execu-
tion time constraint and a hard monetary budget constraint,
i.e., 1,420 seconds and 6.5 dollars. The existing methods,
e.g., ActGreedy, Performance, Economic, cannot meet both
the two constraints, while LNODP can place the data with
data partitioning while satisfying the two hard constraints
with small total cost. In addition, we find that the weight of
objectives only impacts the total cost, which has no impact
on the satisfaction of the constraints.

In addition, the average execution time of LNODP, Per-
formance, Economic, and Brute-force are 2.79�10�4,
4.26�10�5, 4.14�10�5, 2.98�10�4, respectively. While LNODP
corresponds can generate good data placement plans, the
execution time remains quite acceptable.

6.3 COVID-19

Since the coronavirus disease (COVID-19) has become a
global emergency, we reproduced the data processing pro-
gram for the correlation among COVID-19-related search
activities, human mobility, and the number of confirmed
cases in Mainland China presented in [11]. The data involved
in [11] includes the number of confirmed cases in each city
(datasetc), the volume of COVID-19-related search activities
in each city (datasets), inflows and outflows for each city
(datasetm) and the population in each city (datasetp). datasetm
is the inflow and outflow data of inter-city population with
the transitions of the inter-citymobility categorized by the ori-
gin and destination pairs. datasets includes the keywords and
phrases related to the epidemic from January to March. The
total amount of these data sets is 1.134 GB.

The data processing for the COVID-19-related correlation
analysis consists of the following three steps. First, the data
is selected using a filter operation. Then, a join operator is
used to generate the features for each city, i.e., the number
of confirmed cases, the inflows, the outflows, the search vol-
umes, the population. Afterward, the correlation between
any two features is calculated for each city. The experimen-
tal results are shown in Fig. 8. We set DT as 600 seconds
andDM as 0.5 dollars.

Fig. 7. Total cost of Wordcount.

TABLE 3
Results for Hard Execution Time Constraint and Hard Monetary

Budget Constraint

Constraints Cost vt

Time Monetary

LNODP Satisfied (1420.0) Satisfied (6.5) 0.018 0
ActGreedy Broken (1465.8) Satisfied (2.9) 0.0081
Performance Satisfied (1405.4) Broken (9.7) 0.027
Economic Broken (1465.8) Satisfied (2.9) 0.0081

LNODP Satisfied (1420.0) Satisfied (6.5) 0.0053 0.9
ActGreedy Broken (1465.8) Satisfied (2.9) 0.0045
Performance Satisfied (1405.4) Broken (9.7) 0.0062
Economic Broken (1465.8) Satisfied (2.9) 0.0045

Frequency: yearly. Hard time deadline: 1420; hard monetary budget: 6.5. The
time unit is second and the monetary unit is yuan.

1426 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

First, we set the hard execution time constraint as 800
seconds and the hard monetary budget constraint as 2 dol-
lars. Fig. 8 shows that our proposed algorithm, i.e., LNODP,
significantly outperforms Performance (up to 65.1%) when
the size of the input data of the job is smaller than that of
Wordcount. When the frequency is daily, the total costs of
different approaches are shown in Fig. 8a. When vt is 0 and
vm is 1, our algorithm can reduce the total cost by 30.5%
compared with Economic. When vt increases to 0.5, our
algorithm can reduce the total cost by 3.6% compared with
Economic. When the importance of time, i.e., vt, increases
to 0.7, our algorithm can outperform Economic, and the
total cost can be reduced by 2.5%. Fig. 8b presents the total
cost of different approaches when the frequency is quar-
terly. When the user only considers the importance of
money, our algorithm can reduce the total cost by 35.7%
compared with Performance. With the increase of vt, our
algorithm can reduce the total cost by 3.5% and 1.9% com-
pared with Economic when vt is 0.5 and 0.7 respectively.
When the frequency is yearly, the execution results are
shown in Fig. 8c. The most significant result is that our algo-
rithm can reduce the total cost by 65.1% compared with Per-
formance when vt is 0 and vm is 1. When vt is 0.5 and 0.7,
our algorithm can reduce the total cost by 14.9% and 6.5%
compared with Performance and Economic, respectively.

From Fig. 8, we find that our proposed algorithm, i.e.,
LNODP, significantly outperforms the Performance method
(up to 65.1%) and the Economic method (up to 30.5%),
when the frequency of the job execution is high and when
the size of the input data of the job is big.

Table 4 presents the execution with a strict hard execu-
tion time constraint and a hard monetary budget constraint,
i.e., 722 seconds and 1.9 dollars. The existing methods, e.g.,
ActGreedy, Performance, Economic, cannot meet both the
two constraints. However, LNODP can place the data with
data partitioning while satisfying the two hard constraints
with a small total cost. We find that the weight of objectives
only impacts the total cost while having no impact on the
satisfaction of the constraints.

In addition, the average execution time of LNODP, Per-
formance, Economic, and Brute-force are 2.01�10�4,
2.01�10�5, 2.01�10�5, 2.04�10�4, respectively. The execution
time of LNODP is quite acceptable.

7 CONCLUSION

When organizations outsource their data onto the cloud, it is
critical to choose a proper data placement strategy to reduce
its expected total cost. In this paper, we proposed a solution
to enable data processing on the cloud with the data from
different organizations. The approach consists of three
parts: a data federation platform with secure data sharing
and secure data computing, a multi-objective cost model,
and a Lyapunov-based near-optimal data placement algo-
rithm. The cost model consists of monetary cost and execu-
tion time. The Lyapunov-based near-optimal algorithm
delivers a solution to the problem. We carried out extensive
experiments to validate our proposed approach. The experi-
mental results indicate that our proposed algorithm outper-
forms the baseline approaches up to 69.8% and that our
algorithm can generate the same optimal solution as the
brute-force method within a short execution time.

ACKNOWLEDGMENTS

Ji Liu and Lei Mo are equal contribution.

REFERENCES

[1] I. Greif and S. K. Sarin, “Data sharing in group work,” ACM Trans.
Office Inf. Syst., vol. 5, no. 2, pp. 187–211, 1987.

[2] J. Liu et al., “Efficient scheduling of scientific workflows using hot
metadata in a multisite cloud,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 10, pp. 1940–1953, Oct. 2019.

[3] P. Voigt and A. von dem Bussche, The EU General Data Protection
Regulation (GDPR): A Practical Guide, 1st ed. Berlin, Germany:
Springer Publishing Company, Incorporated, 2017.

[4] E. Valentijn et al., “Target and (astro-)wise technologies data fed-
erations and its applications,” in Proc. Int. Astronomical Union,
2016, pp. 333–340.

[5] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “Parallelization of
Scientific Workflows in the Cloud,” INRIA, Research Rep. RR-
8565, 2014.

TABLE 4
Results for Hard Execution Time Constraint and Hard Monetary

Budget Constraint

Constraints Cost vt

Time Monetary

LNODP Satisfied (722.0) Satisfied (1.8) 0.0050 0
ActGreedy Broken (732.1) Satisfied (0.7) 0.0019
Performance Satisfied (720.8) Broken (1.95) 0.00054
Economic Broken (732.1) Satisfied (0.7) 0.0019

LNODP Satisfied (722.0) Satisfied (1.8) 0.0038 0.7
ActGreedy Broken (732.1) Satisfied (0.7) 0.0029
Performance Satisfied (720.8) Broken (2.0) 0.0040
Economic Broken (732.1) Satisfied (0.7) 0.0029

Frequency: yearly. Hard time deadline: 722; hard monetary budget: 1.9. The
time unit is second and the monetary unit is yuan.

Fig. 8. Total cost of COVID-19-Correlation.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1427

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

[6] A. Fox et al., “Above the clouds: A berkeley view of cloud
computing,” Dept. Elect. Eng. and Comput. Sci., California Univ.,
Berkeley, Tech. Rep. UCB/EECS-2009–28, 2009.

[7] N. Kratzke, “A brief history of cloud application architectures,”
Applied Sci., vol. 8, 2018, Art. no. 1368.

[8] M. M. Moghaddam, M. H. Manshaei, W. Saad, and M. Goudarzi,
“On data center demand response: A cloud federation approach,”
IEEE Access, vol. 7, pp. 101 829–101 843, 2019.

[9] X. Boyen and B. Waters, “Anonymous hierarchical identity-based
encryption (without random oracles),” in Proc. Annu. Int. Cryptol.
Conf., 2006, pp. 290–307.

[10] A. Guabtni, F. Charoy, and C. Godart, “Customizable isolation in
transactional workflow,” in Proc. Interoperability Enterprise Softw.
Appl., 2006, pp. 197–202.

[11] H. Xiong et al., “Understanding the collective responses of popula-
tions to the covid-19 pandemic in mainland China,” medRxiv
2020.04.20.20068676, 2020.

[12] W. Fang, X. Yao, X. Zhao, J. Yin, and N. Xiong, “A stochastic con-
trol approach to maximize profit on service provisioning for
mobile cloudlet platforms,” IEEE Trans. Syst., Man, Cybern.: Syst.,
vol. 48, no. 4, pp. 522–534, Apr. 2016.

[13] D. Y. Zhang and D. Wang, “An integrated top-down and bottom-
up task allocation approach in social sensing based edge comput-
ing systems,” in Proc. IEEE INFOCOM Conf. Comput. Commun.,
2019, pp. 766–774.

[14] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in
crowdsensing with location awareness and location diversity,” in
Proc. IEEE INFOCOMConf. Comput. Commun., 2018, pp. 2420–2428.

[15] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha,
“Distributed data placement to minimize communication costs
via graph partitioning,” in Proc. Int. Conf. Scientific Stat. Database
Manage., 2014, pp. 1–12.

[16] K. Zhao, D. Yuan, Y. Xie, L. Yan, and R. Xu, “An optimized data
storage strategy by computational performance and monetary
cost with data importance in the cloud,” in Proc. IEEE Int. Conf.
Comput. Supported Cooperative Work Des., 2017, pp. 433–438.

[17] J. Liu, E. Pacitti, P. Valduriez, D. de Oliveira, and M. Mattoso,
“Multi-objective scheduling of scientific workflows in multisite
clouds,” Future Gener. Comput. Syst., vol. 63, pp. 76–95, 2016.

[18] M. Kumar and S. C. Sharma, “Dynamic load balancing algo-
rithm for balancing the workload among virtual machine in
cloud computing,” Procedia Comput. Sci., vol. 115, pp. 322–329,
2017.

[19] N. Tziritas, S. U. Khan, C. Xu, T. Loukopoulos, and S. Lalis, “On
minimizing the resource consumption of cloud applications using
process migrations,” J. Parallel Distrib. Comput., vol. 73, no. 12,
pp. 1690–1704, 2013.

[20] M. Darwich, Y. Ismail, T. Darwich, and M. A. Bayoumi, “Cost-effi-
cient storage for on-demand video streaming on cloud,” in Proc.
IEEE 6th World Forum on Internet of Things 2020, pp. 1-4.

[21] R. Black, A. Donnelly, D. Harper, A. Ogus, and A. I. T. Rowstron,
“Feeding the pelican: Using archival hard drives for cold storage
racks,” in Proc. USENIXWorkshop Hot Topics Storage File Syst., Hot-
Storage, N. Agrawal and S. H. Noh, Eds. USENIX Assoc., 2016,
pp. 21–25.

[22] S. Blagodurov, A. Fedorova, E. Vinnik, T. Dwyer, and F. Herme-
nier, “Multi-objective job placement in clusters,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2015, pp. 1–12.

[23] R. T. Marler and J. S. Arora, “Survey of multi-objective optimiza-
tion methods for engineering,” Structural Multidisciplinary Optim.,
vol. 26, no. 6, pp. 369–395, 2004.

[24] L. Zadeh, “Optimality and non-scalar-valued performance criteria,”
IEEE Trans. Automat. Control, vol. 8, no. 1, pp. 59–60, Jan. 1963.

[25] M. Farsi, M. Ali, R. A. Shah, A. A. Wagan, and R. Kharabsheh,
“Cloud computing and data security threats taxonomy: A
review,” J. Intell. Fuzzy Syst., vol. 38, no. 3, pp. 2517–2527, 2020.

[26] G. Anthes, “Security in the cloud,” Commun. ACM, vol. 53, no. 11,
pp. 16–18, 2010.

[27] Z. Feng et al., “Securegbm: Secure multi-party gradient boosting,”
in Proc. IEEE Int. Conf. Big Data (Big Data), 2019, pp. 1312–1321.

[28] Y. Singh, F. Kandah, and W. Zhang, “A secured cost-effective
multi-cloud storage in cloud computing,” in Proc. Comput. Com-
mun. Workshops (INFOCOMWKSHPS), 2011, pp. 619–624.

[29] J. Bian, H. Xiong, Y. Fu, J. Huan, and Z. Guo, “Mp2sda: Multi-
party parallelized sparse discriminant learning,” ACM Trans.
Knowl. Discovery Data, vol. 14, no. 3, pp. 1–22, 2020.

[30] J. Bian, H. Xiong, W. Cheng, W. Hu, Z. Guo, and Y. Fu, “Multi-
party sparse discriminant learning,” in Proc. IEEE Int. Conf. Data
Mining, 2017, pp. 745–750.

[31] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat., ser. Pro-
ceedings of Machine Learning Research, 2017, pp. 1273–1282.

[32] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing
security of virtual machine images in a cloud environment,” in
Proc. ACMWorkshop Cloud Comput. Secur., 2009, pp. 91–96.

[33] G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, and
P. Valduriez, “Adaptive caching for data-intensive scientific
workflows in the cloud,” in Proc. Int. Conf. Database Expert Syst.
Appl., ser. Lecture Notes in Computer Science, 2019, pp. 452–466.

[34] T. Jamil, “The rijndael algorithm,” IEEE Potentials, vol. 23, no. 2,
pp. 36–38, Apr./May 2004.

[35] S. Bardhan and D. A. Menasc�e, “The anatomy of MapReduce jobs,
scheduling, and performance challenges,” in Proc. Int. Comput.
Measurement Group Conf., 2013, pp. 1–13.

[36] D. Yoo and K. M. Sim, “A comparative review of job scheduling
for MapReduce,” in Proc. IEEE Int. Conf. Cloud Comput. Intell.
Syst., 2011, pp. 353–358.

[37] I. Surjandari et al., “The batch sheduling model for dynamic multi-
item, multilevel production in an assembly job-shop with parrallel
machines,” Int. J. Technol., vol. 1, pp. 84–96, 2015.

[38] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multi-
core era,” J. Parallel Distrib. Comput., vol. 70, no. 2, pp. 183–188,
2010.

[39] R. Coutinho, L. Drummond, Y. Frota, D. de Oliveira, and
K. Ocana, “Evaluating grasp-based cloud dimensioning for com-
parative genomics: A practical approach,” in Proc. IEEE Int. Conf.
Cluster Comput., 2014, pp. 371–379.

[40] B. Polyak and P. Shcherbakov, “Lyapunov functions: An optimi-
zation theory perspective,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 7456–7461, 2017.

[41] S. Chunduri, M. Ghaffari, M. S. Lahijani, A. Srinivasan, and S.
Namilae, “Parallel low discrepancy parameter sweep for public
health policy,” in Proc. Int. Symp. Cluster, Cloud Grid Comput.,
2018, pp. 291–300.

[42] X. Ren, P. London, J. Ziani, and A. Wierman, “Datum: Managing
data purchasing and data placement in a geo-distributed data
market,” IEEE/ACM Trans. Netw., vol. 26, no. 2, pp. 893–905, Apr.
2018.

[43] L. Mo, A. Kritikakou, and O. Sentieys, “Controllable QoS for
imprecise computation tasks on dvfs multicores with time and
energy constraints,” IEEE J. Emerg. Selected Topics Circuits Syst.,
vol. 8, no. 4, pp. 708–721, Dec. 2018.

[44] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlin-
ear programming: A survey,” Surv. Oper. Res. Manage. Sci., vol. 17,
no. 2, pp. 97–106, 2012.

[45] J. Hartmanis, “Computers and intractability: A guide to the theory
of np-completeness (michael r. garey and david s. johnson),” Siam
Rev., vol. 24, no. 1, 1982, Art. no. 90.

[46] Y. Liu et al., “A fair task assignment strategy for minimizing cost
in mobile crowdsensing,” in Proc. IEEE Int. Conf. Parallel Distrib.
Syst., 2020, pp. 1–10.

[47] R. Fokkink, T. Lidbetter, and L. A. V�egh, “On submodular search
and machine scheduling,” Math. Oper. Res., vol. 44, no. 4,
pp. 1431–1449, 2019.

[48] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions-I,”
Math. Program., vol. 14, no. 1, pp. 265–294, 1978.

[49] T. White, Hadoop: The Definitive Guide, 4th ed. Newton, MA, USA:
O’Reilly Media, Inc., 2015.

[50] J. Liu et al., “Analysis of collective response reveals that covid-19-
related activities start from the end of 2019 in mainland china,”
Arch. Clin. Biomed. Res., vol. 5, no. 3, pp. 313–343, 2021.

[51] J. Liu et al., “An investigation of containment measures against the
covid-19 pandemic in mainland china,” 2020, arXiv:2007.08254.

[52] “Dblp: Computer science bibliography.” Accessed: Feb. 21, 2021.
[Online]. Available: https://dblp.org/xml/

[53] “Apache hadoop.” Accessed: Feb. 21, 2021. [Online]. Available:
http://hadoop.apache.org/

[54] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE Symp. Mass Storage Syst.
Technol., 2010, pp. 1–10
.

1428 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

https://dblp.org/xml/
http://hadoop.apache.org/

Ji Liu (Member, IEEE) received the PhD degree
from the University of Montpellier in 2016, the
master’s degree from Telecom SudParis in 2013,
and the BsC degree from Xidian University in
2011. He is currently a staff researcher with the
Big Data Laboratory, Baidu Research, Beijing,
China. He was a software engineer with Murex
and postdoctoral research fellow with Inria and
LIRMM, University of Montpellier, France. Previ-
ously, he was a PhD candidate with the Microsoft
Research Inria Joint Centre, Inria Zenith team.

He has authored or coauthored several papers in top international jour-
nals and conferences, such as NeurIPS, AAAI, KDD, Transactions on
Knowledge Discovery from Data, IEEE Transactions on Intelligent
Transportation Systems, and IEEE Transactions on Knowledge and
Data Engineering, and is a coauthor of the book Data-Intensive Workflow
Management For Clouds and Data-Intensive and Scalable Computing
Environments published by Morgan Claypool in 2019. His research inter-
ests include federated learning, distributed machine learning, scientific
workflows, distributed and parallel databases, and distributed system.

Lei Mo (Member, IEEE) received the BsC degree
from the College of Telecom Engineering and
Information Engineering, Lanzhou University of
Technology, Lanzhou, China, in 2007, and the
PhD degree from College of Automation Science
and Engineering, South China University of Tech-
nology, Guangzhou, China, in 2013. He is cur-
rently an associate professor with the School of
Automation, Southeast University, Nanjing,
China. From 2013 to 2015, he was a research fel-
low with the Department of Control Science and

Engineering, Zhejiang University, China. From 2015 to 2017, he was a
research fellow with INRIA Nancy–Grand Est, France. From 2017 to
2019, he was a research fellow with INRIA Rennes–Bretagne Atlantique,
France. His current research interests include networked estimation and
control in wireless sensor and actuator networks, cyber-physical sys-
tems, task mapping, and resources allocation in embedded systems. He
is currently an an associate editor for the KSII Transactions on Internet
and Information Systems, International Journal of Ad Hoc and Ubiqui-
tous Computing, and Journal of Computer and Journal of Electrical and
Electronic Engineering. He is also a guest editor of the IEEE Access and
Journal of Computer Networks and Communications, and a TPC mem-
ber for several international conferences.

Sijia Yang is currently working toward the PhD
degree with the School of Cyber Space Security,
Beijing University of Posts and Telecommunica-
tions. Her research interests include federated
learning and big data analytics.

Jingbo Zhou received the BE degree from Shan-
dong University in 2009 and the PhD degree from
the National University of Singapore in 2014. He
is currently a staff research scientist with Busi-
ness Intelligent Lab of Baidu Research, working
on machine learning problems for both scientific
research and business applications, with a focus
on spatial temporal data mining and AI for health-
care. He was on the program committees among
top conferences in the data mining and artificial
intelligence communities, including KDD, AAAI,
IJCAI, ACL, CIKM, and SDM.

Shilei Ji received the master’s degree from Tian-
gong University in 2009. He is currently a staff
engineer with Baidu, Beijing, China, working on
data security and privacy protection for both sci-
entific research and business innovation, with a
focus on secure multiparty computation, feder-
ated learning, and confidential computing.

Haoyi Xiong (Senior Member, IEEE) received
the PhD degree in computer science from Tele-
com SudParis, Universit�e Pierre et Marie Curie,
Paris, France, in 2015. From 2016 to 2018, he
was an Tenure-Track assistant professor with the
Department of Computer Science, Missouri Uni-
versity of Science and Technology, Rolla, MO,
USA (formerly known as University of Missouri at
Rolla). From 2015 to 2016, he was a postdoctoral
research associate with the Department of Sys-
tems and Information Engineering, University of

Virginia, Charlottesville, VA, USA. He is currently a principal R&D archi-
tect and researcher with Big Data Laboratory, Baidu Research, Beijing,
China. He has authored or coauthored more than 60 papers in top com-
puter science conferences and journals., such as ICML, ICLR, UbiComp,
JDD, RTSS, AAAI, IJCAI, ICDM, PerCom, IEEE Transactions on Mobile
Computing, IEEE Internet of Things Journal, IEEE Transactions on Neu-
ral Networks and Learning Systems, IEEE Transactions on Computers,
ACM Transactions on Intelligent Systems and Technology, and ACM
Transactions on Knowledge Discovery from Databases. His current
research interests include automated deep learning (AutoDL), pervasive
computing, and Internet of Things. He gave keynote speeches in a series
of academic and industrial activities, such as the industrial session of the
19th IEEE International Conference on Data Mining (ICDM’19), and was
a poster co-chair for the 2019 IEEE International Conference on Big
Data (IEEE Big Data’19). He was the recipient of Best Paper Award from
IEEE UIC 2012, Outstanding PhD Thesis Runner Up Award from CNRS
SAMOVAR 2015, and the Best Service Award from IEEE UIC 2017. He
was one of the co-recipients of the prestigious Science and Technology
Advancement Award (First Prize) from Chinese Institute of Electronics
2019, and has been granted the prestigious IEEE TCSC Award for
Excellence in Scalable Computing (Early Career Researcher), 2020 by
IEEE Computer Society Technical Committee on Scalable Computing
(IEEE TCSC).

Dejing Dou (Senior Member, IEEE) received the
bachelor’s degree from Tsinghua University,
China, in 1996 and the PhD degree from Yale
University in 2004. He is currently the Head of
Big Data Lab (BDL) and Business Intelligence
Lab (BIL) with Baidu Research. He is also a full
professor (on leave) with the Computer and Infor-
mation Science Department, University of Ore-
gon. He has authored or coauthored more than
150 research papers, some of which appear in
prestigious conferences and journals like AAAI,

IJCAI, ICML, NeurIPS, ICLR, KDD, ICDM, ACL, EMNLP, CVPR, ICCV,
CIKM, ISWC, Transactions on Knowledge Discovery from Data, Journal
of Intelligent Information Systems, and JoDS, with more than 4500 Goo-
gle Scholar citations. His research interests include artificial intelligence,
data mining, data integration, NLP, and health informatics. His DEXA’15
paper received the Best Paper Award. His KDD’07 paper was nominated
for the Best Research Paper Award. His COLING’18 paper was Area
Chair Favorites (excellent). He is on the editorial boards of the Journal
on Data Semantics, Journal of Intelligent Information Systems, and
PLOS ONE. He is an editor-in-chief of AIMS Electronic Research
Archive. He has been serving as program committee members for major
international conferences and as program co-chairs for five of them. He
has received over five million PI research grants from the NSF and the
NIH. He is a senior member of the ACM .

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LIU ETAL.: DATA PLACEMENT FOR MULTI-TENANT DATA FEDERATION ON THE CLOUD 1429

Authorized licensed use limited to: University of Nantes. Downloaded on July 06,2023 at 12:20:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

