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To explain the prediction result of a Deep Neural Network (DNN) model based on a 
given sample, LIME [1] and its derivatives have been proposed to approximate the local 
behavior of the DNN model around the data point via linear surrogates. Though these 
algorithms interpret the DNN by finding the key features used for classification, the 
random interpolations used by LIME would perturb the explanation result and cause 
the instability and inconsistency between repetitions of LIME computations. To tackle 
this issue, we propose G-LIME that extends the vanilla LIME through high-dimensional 
Bayesian linear regression using the sparsity and informative global priors. Specifically, 
with a dataset representing the population of samples (e.g., the training set), G-LIME 
first pursues the global explanation of the DNN model using the whole dataset. Then, 
with a new data point, G-LIME incorporates an modified estimator of ElasticNet-alike to 
refine the local explanation result through balancing the distance to the global explanation 
and the sparsity/feature selection in the explanation. Finally, G-LIME uses Least Angle 
Regression (LARS) and retrieves the solution path of a modified ElasticNet under varying 
�1-regularization, to screen and rank the importance of features [2] as the explanation 
result. Through extensive experiments on real world tasks, we show that the proposed 
method yields more stable, consistent, and accurate results compared to LIME.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

While deep neural networks (DNNs) [3] have achieved remarkable performance in a variety of tasks, explaining their be-
haviors remains challenging due to their hierarchical non-linear nature in a black-box fashion [4]. The lack of interpretability 
raises a severe issue on the trustworthiness of DNNs in decision-critical domains, such as autonomous driving, healthcare, 
and financial services. Implementing unreliable decisions made by black-box models without further interpretations or ex-
planations1 may expose the risk of adverse societal consequences related to privacy or fairness [5–7].
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Existing interpretation algorithms To explain the prediction results of DNN models based on given samples, recent stud-
ies [1,8–12] majorly focus on interpolating and approximating the local regions and/or global regimens of DNNs in the 
feature domain. In addition, they use simple and self-interpretable models such as linear and tree-based models. In these 
studies, the contribution or importance of every feature for classifying either a specific sample or the whole dataset could be 
obtained as the results for local and global interpretations respectively.

For example, LIME [1] incorporated a new concept, namely local fidelity, to enable the local explanation. Given a data 
point, interpretable surrogate models, such as linear combinations of features or linear regression models, have been pro-
posed in LIME to approximate the DNN model behaviors with small random perturbations for interpolation in the input 
feature domains. While such strategies work to a wide range of models, the random perturbation often causes inconsistent 
interpretations as the explanation results for the same data point on the same model might be different in two independent 
trials [9,13–16], leading to unstable explanation results at times. Some comparison examples are shown later in Fig. 8. Thus, 
there needs a way to stabilize the results of LIME under the perturbation caused by random interpolations and finally improve the 
consistency of interpretation results.

In addition to local approximations, one could also interpret DNN models in a global manner. To achieve the goal, 
[17,10,11] propose to run LIME [1] or gradient-based interpretations [18–20] for every sample in a large dataset, and then 
simply aggregate local approximations, so as to pursue the global interpretation. While the global interpretation provides 
some trends of DNNs’ behaviors in the overall feature space, it fails to sketch the behaviors of DNNs especially in most local 
areas. For example, a global linear model is incapable of characterizing the multiple linear subregions [21–23] that co-exist 
in a DNN. Thus, there needs a way to balance the local and global interpretations for better explanation.

Furthermore, with a linear surrogate model, LIME [1] optionally uses LASSO [24] to first select a subset of features and 
later assign weights to selected features for regression, in an ad-hoc manner. While subset selection in regression has been 
proven to be NP-hard [25,26] for achieving the optimal solution, there needs an end-to-end approach that ensure the sparsity or 
control the number of nonzero weight coefficients [27] in the results of interpretations, especially for high-dimensional data (e.g., 
images and/or texts). Of-course, there exist other ways to interpret the prediction results in addition to linear models, such 
as model reconciliation [28], sample contribution to predictions [12], rule/example-based explanations [29], and perception 
of raw features with logic [30], which are not in the scope of our work.

Our contributions In this work, we reformulate the original linear model based local interpretation problem using the 
high-dimensional Bayesian linear regression framework with a global prior [31]. Specifically, we consider that the local in-
terpretation result for every sample independently distributes over a prior multivariate Gaussian distribution with a center 
location at the global interpretation result of the model [32]. Endowed by a Ridge-type estimator [33], the use of global pri-
ors with �2-regularization could lower the variances of estimation through constraining the solution around an informative 
global prior. Furthermore, to improve the feature selection in the interpretation result, an �1-regularization is incorporated 
to penalize the number of nonzero elements in the regression in a noisy setting [34]. In this way, we obtain a novel esti-
mator for LIME in an ElasticNet-style [35], namely Modified ElasticNet, which incorporates both �2 and �1-regularization for 
the global prior and sparsity respectively. We show the G-LIME explanation results for visual tasks based on superpixels in 
Fig. 1, where superpixels have been gathered from the image to form the features for the explanation results. In summary, 
we make contributions as follows.

• This work studies the linear local surrogate [1] to interpret the classification results of DNN models for input samples, 
with respect to the consistency between local and global interpretations of the model [17,10,11]. In this way, we re-
formulate the research problem in a Bayesian linear regression framework, where the prior probability distribution for 
the regression is defined by the global interpretation. To the best of our knowledge, this work is the first to balance the 
local and global interpretations of DNNs for linear surrogate models in a Bayesian framework.

• We propose G-LIME, an efficient and effective sparse Bayesian estimator of LIME with the global interpretation as prior. 
Specifically, with aggregated global interpretations, given an individual data point, G-LIME interprets prediction results 
of DNN models using a modified ElasticNet estimator, where an �2-regularizer is used to constrain the local interpreta-
tion around the informative global prior and an �1-regularizer is used to control the sparsity of the explanation result. 
Furthermore, the least angle regression (LARS) [36] is used to retrieve the solution path of the modified ElasticNet 
varying �1-regularization, so as to provide an end-to-end explanation endowed with the sparsity and global priors.

• We carry out extensive experiments and evaluate G-LIME in comparison with LIME and other interpretability baselines. 
The experiments are based on real-world datasets including computer vision (CV), natural language processing (NLP), 
and structural datasets with commonly-used deep models such as ResNet [37], EfficientNet [38], AlexNet [39] and the 
standard multilayer perceptron (MLP) models. Specifically, we compare G-LIME with LIME and other interpretation 
algorithms using local fidelity evaluation, deletion/insertion experiments, and the stability evaluation. Results clearly 
demonstrate the effectiveness and efficiency of G-LIME in providing more stable and accurate explanations. The ablation 
studies show that the use of global prior could significantly improve and refine the local explanation results.

The rest of this manuscript is organized as follows. Section 2 reviews preliminaries in interpretation algorithms for DNN 
models and common ways to evaluate the explanation results. In Section 3, we present the design of G-LIME, including 
2
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Fig. 1. Illustration of an image with its superpixel segmentation, explanation results with different presentations. The image is correctly classified into the 
“Savannah Sparrow” class with 75% probability. G-LIME explanation results based on superpixels are presented in gray-scale with the attributed values to 
the superpixels (see the middle figure). For a better visualization, the explanation results are also shown by highlighting the top superpixels in green (see 
the right two figures). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

algorithm design, analysis, and adaptation to computer vision (CV) tasks. In Section 4, we present experiments and results 
to evaluate G-LIME with comparisons and analysis. In Section 5, we conclude this paper.

2. Preliminaries and related works

In this section, we review algorithms that locally and globally explains DNN models’ behaviors and the evaluation meth-
ods.

2.1. Local explanations

Local Interpretable Model-agnostic Explanations (LIME) [1] searches an interpretable model, usually a linear one, to 
approximate the output of a deep model for an individual data point, such that LIME obtains a weighted linear combination 
of features including the importance of every feature for classifying the data point. For the local approximation, LIME 
introduces the random interpolation in the feature domain to generate samples around the data point, that are used for 
approximating the linear model. Specifically, given a d-dimensional vector as the input data point x, LIME generates n
random samples (denoted as a n ×d matrix as X ) around x through injecting small random noises to x, then LIME classifies 
all these n samples using the DNN model and obtains the vector of classification results y for every random sample in X
accordingly. Finally, LIME interprets the local behavior of the DNN model around the sample x through the Ridge regression

βLIME ← arg min
β∈Rd

(y − Xβ)�(y − Xβ) + λβ�β, (1)

where β ∈Rd is the weighted linear combination of features to be optimized, and λ is the tuning parameter for regulariza-
tion. In the vanilla LIME, samples are weighted and the sample weights can be represented by a diagonal matrix D ∈Rn×n+ . 
For the reason that D can be written as 

√
D

�√
D and integrated into the inner product and that our approach does not 

change the sample weights, we omit D for simplicity. Note that to lower the complexity of regression in high-dimensional 
settings, LIME first selects a subset of features for performing above regression (in Eq. (1)) through variables/predictors 
selection based on LASSO [24].

The closed-form solution for the Ridge regression can be deduced by simply taking the first-order derivative of the 
objective function to zero:
3
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βLIME = (X� X + λI)−1 X� y. (2)

In this way, we consider βLIME obtained in Eq. (2) as the exact solution of LIME for the local interpretation of the DNN 
model around the data point x, while the tuning parameter λ is used to ensure the non-singularity of the regression and 
would affect the results of interpretations.

Related local explanations A number of interpretation algorithms have been proposed recently, mainly focusing on im-
proving the stability of LIME. For example, ALIME [40] proposed to weight the generated samples by using an auto-encoder 
which, however, requires the training set and one additional training process. This would be difficult if the training set is 
not accessible. Anchors [41] proposed to find a subset of input features that are considered to be important by the model 
with much more computation. Instead of using the synthetically generated samples to train the linear model, D-LIME [14]
proposed to find a relevant cluster of the local data point from the training set. This improves the stability of explanations 
but it is very challenging for visual tasks where the input features are not explicitly shared by different images. Moreover, 
there are several others [42,43,16] that focus on improving the explanation quality of LIME.

Our proposed G-LIME differs from them mainly in the integration of sparsity and global prior into the one single esti-
mator of the modified ElasticNet. G-LIME is suitable for all tasks and does not require the access to the training set. We 
believe our approach and theirs provide improvements in orthogonal directions for better explaining the DNN models. In 
this work, to demonstrate the effectiveness and efficiency from our proposed approach G-LIME, we directly compare with 
LIME and related variants, e.g. Anchors.

Besides LIME variants, Integrated Gradient (IG) [20] introduced two axioms violated by LIME to improve the reliability 
of explanations, SHAP [44] incorporated a game-theoretic framework, and Grad-CAM [18] was specifically designed for 
convolutional networks. See the recent surveys [45,46] for more explanation algorithms. To show the advantage of our 
methods, we also compare with SmoothGrad [19], IG [20] and Grad-CAM [18]. We will show that the two pixel-level 
explanations (SmoothGrad and IG) provide explanations that do not cover all important features (low insertion scores, as 
introduced later) while the low-resolution explanation Grad-CAM provides less discriminative rankings for the important 
features (low deletion scores, as introduced later).

2.2. Global explanations through aggregations of local explanations

In addition to the local interpretations, the LIME explanations have been frequently used for global interpretations [11,
10], aiming to obtain a weighted linear combination of features that represents the feature importance for classifying a large 
set of samples based on a DNN model.

Let B ∈ Rm×d be the LIME explanations of m samples, where each row is a linear weight vector β . Then we briefly 
recall four global aggregation approaches: LIME-SP [1], Averaged-Importance [10], Homogeneity [10] and NormLIME [11], as 
follows.

• LIME-SP: Due to the limited budget, LIME-SP [1] searches a subset from m samples via a sub-modular pick (SP) al-
gorithm. We consider all the m samples and do not need the sample-picking strategy. So LIME-SP aggregates local 
interpretations as follows,

βSP
j =

√√√√ m∑
i=1

|Bij|, (3)

where | · | refers to the absolute value. |βSP
j | increases when the corresponding feature tends to be more influential on 

the DNN model’s output, or the feature occurs more often on various data points.
• Averaged-Importance: LIME-SP would be biased towards features that always occur. For example, in NLP tasks, common 

words occur more often than other words, but they should not be assigned a large value of importance. Averaged-
Importance [10] copes with this problem by simply performing an average operation,

βAVG
j =

∑m
i=1 |Bij|∑
i 1Bij �=0

. (4)

• NormLIME: For one specific data point, LIME interpretations are reasonable because the obtained linear parameters can 
be compared among all features. However, for a set of data points, comparing the parameters on the same feature is less 
plausible because different data points have variant scales/norms of the linear parameters. To this end, [11] proposed 
to normalize the LIME interpretation before averaging,

βN
j = 1∑

i 1Bij �=0

m∑
i=1

B2
i j

‖Bi‖1
, (5)

where ‖Bi‖1 is the �1 norm of the i-th sample’s LIME explanation.
4
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• Homogeneity: Homogeneity-weighted global importance [10] aims at quantifying the homogeneity per feature by Shan-
non entropy and re-scaling the LIME-SP result,

βH
j =

(
1 − H j − Hmin

Hmax − Hmin

)
βSP

j , (6)

where H j = − 
∑

c′ p j(c′) log p j(c′)) summed over all classes, p j(c) =
√∑

i∈Sc |B i j |∑
c′

√∑
i∈Sc′ |B i j |

, and Sc is the set of all data points 

that are labeled to the class c.

2.3. Explanation method evaluations

To evaluate the explanation methods, the trustworthiness and the stability are usually assessed [47,13,48,49,46]. The 
intuition is that the explanation method should be trustworthy and faithful to the original model behaviors, otherwise the 
explanation result is not valuable and helpful; and that the explanation method should be stable when explaining similar 
inputs. We summarize several common evaluation methods below, note that in this paper, we mainly consider evaluating 
the explanation methods that provide explanations of feature importance for the original model.

• Local fidelity (R2 score and mean square error). LIME [1] measures the local fidelity for explanation method evaluation, 
which indicates the R2 score between original model outputs and surrogate (linear) model outputs, or the mean square 
error between the two [48].

• Deletion/Insertion. RISE [50] proposes to delete the features from an original data according to the explanation results 
and compute the probability degradation with respect to the DNN model. The model quickly fails to do the right 
prediction if the most important features are removed, so the degradation speed, measured by the area under curve 
(AUC), indicates the quality of explanation results. Similarly, RISE also proposes to insert the features from an average 
data and computes the AUC accordingly. The model performance degrades when removing important features because 
of two reasons: the important information is removed or the data distribution is changed. For these reasons, [51,11]
proposed to additionally retrain the model to eliminate the factor of data distribution changes.

• Stability [13,48]. The local explanation methods give inconsistent results when the number of interpolated input samples 
is small [1,13,52]. We will show an illustration later in Fig. 8. The motivation is to encourage stable explanation methods 
that provide consistent results when similar inputs are given. This can be quantitatively measured by the stability 
metric [13,48].

• We evaluate the proposed explanation method G-LIME with metrics mentioned above while there are several other 
evaluation methods including infidelity and sensitivity evaluations [53], BAM [54] and so on.

In this paper, we validate our proposed method G-LIME using local fidelity, deletion/insertion and stability evaluations.

3. G-LIME

Our work considers the original LIME with linear surrogate models (Eq (1)) as an application of Ridge estimator. In order 
to improve the stability of LIME, we propose to use the sparsity and the informative global priors via a modified ElasticNet 
estimator. Sparsity is favored through LASSO by LIME too, while LIME uses LASSO to first select a subset of features and then 
assign weights to selected features by regression. We achieve this in an end-to-end manner, as shown later in Eq (7). The �1
regularization term for encouraging sparsity and the �2 for reducing variance are used together. More importantly, we note 
that the �2 does not always introduce bias because we integrate the global priors into the �2 term. In this way, compared 
to LIME, our proposed method gets additional global information from the aggregated local explanations. This does not only 
alleviate the randomness of LIME explanations, but also improves the faithfulness of explanations (in condition that the 
global prior is informative and well exploited). To this end, we propose to improve LIME using the sparsity and informative 
global priors via a modified ElasticNet estimator.

3.1. Main framework

G-LIME starts by pursuing the global interpretation βglobal, and then computes the explanation through a modified 
ElasticNet estimator with βglobal as a global prior and fast feature screening via LARS. The three processes are shown in 
Algorithm 1 and listed as follows.

1. Global Interpretation Pursuit - As shown in lines 7–12 of Algorithm 1, given a DNN model for interpretation and a dataset 
representing the population of samples, G-LIME first obtains the local interpretation for every sample in the dataset 
using LIME via linear local surrogate. Then, G-LIME aggregates these local interpretations and pursues the global inter-
pretation βglobal of the DNN model through NormLIME [11] and Averaged-Importance [10]. For the design of these two 
algorithms, please refer to preliminaries introduced in Section 2.2.
5
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Algorithm 1: G-LIME Main Framework.

1 /* Initialization */
2 Input: D the dataset for global prior pursuit
3 Input: model(·) the model for interpretation
4 Input: x the sample for interpretation
5 Input: λ∗

2 the regularization effects of �2-regularization
6 Set B , X and y to empty sets
7 /* Global Prior Pursuit */
8 for each x′ in D do
9 β ′ ← LIME(model, x′)

10 B ← B ∪ β ′
11 end

12 βglobal ← NormLIME(B) or AverageImportance(B)

13 /* Building the Modified ElasticNet Estimator */
14 X ← RandomInterpolations(x)

15 for each x′′ in X do
16 y ← y ∪ model(x′′)
17 end

18 βmENet(λ1, λ2) ← argminβ‖Xβ − y‖2
2 + λ1‖β‖1 + λ2‖β − βglobal‖2

2
19 /* Screening Variables for Explanations */

20 Solution_Path ← LARS(βmENet(λ1, λ∗
2)) with varying λ1

21 return Solution_Path

2. Modified ElasticNet Estimator - As shown in lines 13–18 of Algorithm 1, given the DNN model and the data point x for 
interpretation as well as the global interpretation βglobal, G-LIME first follows the standard operations of LIME – the 
algorithm first randomly interpolates the feature domains around x and obtain the random samples in the matrix X , 
then G-LIME tests every sample in X and restores the corresponding responses from the DNN in the vector y. With 
βglobal as the global prior, random samples (around x) in X and the DNN responses in y, G-LIME surrogates the local 
interpretation of the DNN model around x using a modified ElasticNet estimator βmENet(λ1, λ2) incorporating both �1
and �2 regularizers, to enjoy sparse and informative global priors in Bayesian linear regression.

3. Fast Feature Screening for Interpretation via LARS - As shown in lines 19–21 of Algorithm 1, with an appropriate tuning λ∗
2

to �2-regularization as the input, G-LIME uses LARS to output the solution path of the Modified ElasticNet – a series of 
βG(t) for an increasing t from 0+ to a large positive number, which corresponds to βmENet(λ1, λ∗

2) with a decreasing λ1
from ∞ → 0+ . Then, G-LIME screens features and ranks the features by their importance through a standard statistical 
variable selection procedure over the solution path [55,2]. The combination of the top ranked features is considered as 
the interpretation results.

In the following, we present the design and analysis of the modified ElasticNet estimator and fast screening algorithms.

3.2. Modified ElasticNet estimator

As was mentioned, with the input data point x and the DNN model for interpretation, G-LIME follows the standard 
implementation of LIME and randomly interpolates feature domains around x to obtain the matrix of random samples X
and the corresponding DNN outputs in y . Then, with the global interpretation βglobal as the prior, G-LIME pursues the local 
interpretation of the model around x via a modified ElasticNet estimator as follows

βmENet(λ1, λ2) ← arg min
β

‖Xβ − y‖2
2 + λ1‖β‖1 + λ2

∥∥∥β − βglobal
∥∥∥2

2
, (7)

where λ1 and λ2 are two tuning parameters to adjust the sparsity and the βglobal-centered Gaussian prior accordingly.

3.3. Fast feature screening for explanations

To screen the possible local interpretations with varying strength of �1-regularization or using different subsets of feature 
selection in an extremely fast manner, G-LIME adopts Least Angle Regression (LARS) [36] to retrieve the complete paths of 
coefficients. With an appropriate tuning parameter λ∗

2 for �2-regularization, we rewrite the modified ElasticNet estimator 
into a �1-constrained quadratic minimization form, as follows,

βG(t) ← arg min
β

β� (
X� X + λ∗

2 I
)

β − 2
(

X� y + λ∗
2β

global
)�

β,

s.t. ‖β‖ ≤ t .

(8)
1

6
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According to the Karush–Kuhn–Tucker conditions in ElasticNet estimator [35,56], for any λ1 > 0, there exists a specific t
such that βG(t) = βmENet(λ1, λ∗

2). In this way, LARS can output a series of βG(t) with an increasing t from 0+ to a large 
number, which are equivalent to the series of βmENet(λ1, λ∗

2) with a decreasing λ1 from ∞ → 0+ . In this way, we can screen 
the selection of features in the local interpretations obtained by G-LIME.

Finally, we follow the standard operation proposed for �1-regularized solution path [55] to screen and rank the features 
by their importance – i.e., the order of every feature’s linear regression coefficient turns to non-zero in the solution path of 
the modified ElasticNet with increasing t . The top ranked features are combined as the final interpretation result based on 
G-LIME.

3.4. Algorithm analysis

We analyze the proposed algorithms from three perspectives as follows.

3.4.1. Interpretation as a Bayesian inference
As early as [57], �q-norm regularized least square estimators have been considered as performing Bayesian inference 

based on certain prior distributions, such as Gaussian prior for Ridge and Laplacian prior for Lasso. We here follow the 
Bayesian analysis in [35] to connect G-LIME via the modified ElasticNet estimator with Bayes. Our analysis conditional on 
X , which was obtained through random interpolation around the data point x.

In this way, we can model the DNN outputs y as y ∼ N (Xβ, σ 2 I), where β refers to the random variable of the 
local interpretation result and σ 2 refers to the variance of random noises in observation. Such noises should be caused by 
the higher-order responses of DNNs under random interpolation in the feature domain, as the linear surrogate can only 
approximate the first-order derivative of the DNN output for the local interpretation. In this way, the square error term 
coincides the logarithm of the likelihood L(X , y, σ 2|β) as follows,

L(X, y,σ 2|β) ∝ exp

(
−‖Xβ − y‖2

2

2σ 2

)
. (9)

Further, we could model the prior probability distribution of β based on the global interpretation βglobal as π(β|βglobal), 
such that

π(β|βglobal) ∝ exp
(
−C1‖β‖1 + C2‖β − βglobal‖2

2

)
, (10)

where C1 and C2 are two constants defining the Gaussian and Laplacian priors. Thus, with appropriate settings of λ1 and 
λ2 with respect to σ 2, C1 and C2, the estimator of βmENet(λ1, λ2) (defined in Eq (7)) is equivalent to the result of Bayesian 
inference that maximizes the posterior probability combining the likelihood term L(X, y, σ 2|β) and the prior π(β|βglobal), 
as follows

βmENet(λ1, λ2) :=arg max
β∈Rd

{
L(X, y,σ 2|β) · π(β|βglobal)

}
. (11)

In this way, we can conclude that G-LIME interpret the DNN around a sample through a Bayesian inference that models the 
interpretation result following a joint prior distribution of Laplacian and βglobal-centered Gaussian.

3.4.2. Trade-off between local interpretation and global prior
The original LIME regularizes the estimation of local interpretation using a simple �2-norm regularizer. G-LIME uses both 

�1 and �2 regularization to the estimation, while the tuning parameter λ2 controls the balance between the local and global 
interpretations.

Note that the tuning parameter λ2 is non-negative, and changing its value will produce different effects. When λ2 → ∞, 
the interpretation totally ignores the local individuality, reserving only the global information. When λ2 → 0, the interpreta-
tion leans towards a sparse approximation to the local approximation of LIME (depends on the strength of �1-regularization).

3.4.3. Algorithmic complexity
Compared to LIME, the increased computations of G-LIME mainly comes from the global aggregations. Fortunately, the 

global aggregations need to be performed only once and can be prepared offline in advance. Furthermore, aggregating the 
interpretations from all the data points over the whole dataset is not always needed, especially when the dataset is large-
scale. Alternatively, it is possible to aggregate a subset of data points for global information, so as to lower computation cost 
upon the budget limit.

In addition to the estimation of global priors, the computation of G-LIME is passing one round of feature screening 
algorithm LARS (Equation (8)).
7
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3.5. Adaptation of G-LIME to computer vision (CV) tasks through clustering superpixels

In previous subsections, we have introduced core algorithms design and analysis of G-LIME to explain the prediction 
results of multivariate models, where the inputs of the model are supposed to be structural data in Rd , i.e., with d vari-
ables/features. However, for nonstructural datasets such as images, the number of dimensions for every sample depends 
on the size the image, while pixels or superpixels in different images could not be considered as distinct variables in a 
multivariate system with a fixed number of dimensions. Thus, for adaptation to CV tasks, there needs to first (1) discover 
variables and formulate the linear surrogate models for every image, and (2) construct and reconfigure the global prior subject to 
the number of variables.

3.5.1. Variable discovery and linear surrogate formulation
To discover variables (i.e., X ) for interpretations based on arbitrary image datasets, G-LIME considers the common visual 

objects/patterns in the images as variables. Given any image, G-LIME follows the default setting in LIME with QuickShift [58]
for segmenting the image into superpixels, and sets the number of superpixels as the variable dimension d in the linear 
surrogate model for the interpretation. Then, G-LIME generates N interpolations in d dimensions (denoted as X ) towards 
the given image and collect N responses (denoted as y) from the DNN model accordingly. With X and y, G-LIME can either 
build the linear surrogate models for LIME listed in Eq. (1), or established the proposed modified ElasticNet estimator listed 
in Eq. (8) for advanced interpretation through incorporating with the global prior (introduced below).

Algorithm 2: Superpixel Clustering.

1 /* Initialization */
2 Input: D the dataset for global prior pursuit
3 Input: N_Clusters the number of superpixel clusters for global prior
4 Set F to an empty set
5 /* Superpixel and Feature Extraction */
6 for each image in D do
7 S ← Segment(image)
8 for each superpixel s in S do
9 f ← ComputeSuperpixelFeature(s)

10 F ← F ∪ f
11 end
12 end
13 /* Feature Vectors Clustering */
14 Cluster_Centers ← KMeans(F , N_Clusters)
15 return Cluster_Centers

3.5.2. Global prior construction and mapping
As was mentioned in Section 2.2, the global prior could be obtained through aggregating the local explanations based on 

the set of samples representing the whole population (e.g., ImageNet). However, the dimensions of the local explanations 
actually vary on the number of superpixels in images and it is difficult to aggregate vectors of different dimensions. In this 
way, as shown in Fig. 2, G-LIME proposes to map local explanations of different dimensions to the global prior for G-LIME 
in three steps as follows.

(a) Superpixel Extraction and Clustering. Given the superpixels extracted from every image in ImageNet, G-LIME transforms 
every superpixel into a feature vector using the first layer output of ImageNet-pretrained models (i.e., ResNet-101 [37]
or MobileNet [59]), and groups the feature vectors of all superpixels into K clusters using K-Means, where we set 
K = 100 in our experiments. The clustering on ImageNet would be more robust and less biased/overfit towards any 
specific target dataset. Moreover, this is an off-line step that needs to be done once. With the computed clusters, we 
can perform the following two steps.

(b) Mapping and Merging Local Explanations for Global Prior. Given the local explanation obtained by LIME for every image 
in the dataset, G-LIME first maps the local explanation to a vector of K dimensions, where every dimension refers to 
a cluster of superpixels. Specifically, the algorithm assigns every dimension in the local explanation to one of the K
dimensions through searching the nearest cluster center in feature vectors. Finally, with the K -dimension vector for 
every local explanation in the dataset, G-LIME aggregates these K -dimension vectors using Algorithms in Section 2.2, 
to obtain the global prior (of K dimensions).

(c) Mapping Global Prior for G-LIME Explanation. Given a new image for explanation, G-LIME first screens the superpixels 
in the image (i.e., d superpixels), then maps the global prior (a K -dimension vector) to a d-dimension vector through 
matching every superpixel in the image to the K clusters via the nearest cluster center search.

Fig. 3 shows three clusters that show human-understandable semantics obtained from ImageNet. Each row presents one 
cluster with five images from ImageNet and five another from CUB-200-2011. The first row shows a kind of layer-over-
layer pattern: in ImageNet, this pattern can be water waves, plaids in t-shirt or snow layers; in CUB, this pattern principles 
reside in wings. The second row obviously shows red colors. In fact, there are also black, yellow, blue colors in the obtained 
8
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Fig. 2. Global Prior Construction and Mapping.

Table 1
Baseline algorithms and configurations. “x” (referring to the aggregator for 
Global Priors) could be “N” for NormLIME, “AVG” for Averaged-Importance, 
“SP” for LIME-SP, “H” for Homogeneity, as introduced in Subsection 2.2.

Algorithms Remarks

LIME

Feature Selection
(LASSO) +
Feature Importance
(Ridge)

Vanilla LIME

LIME-Path

ElasticNet for
Feature Selection
and Importance
Ranking

G-LIME
using Zero
as Global Priors

G-LIME-x (Ours)

Feature Selection
(LASSO) +
Feature Importance
(Ridge with Global
Prior)

With Global Prior in
�2-penalty

G-LIME-x-Path (Ours) Modified ElasticNet End-to-end Approach

clusters. The third rows show the patterns of grass, furs and earth. All of them exhibit that the clusters are obtained through 
low-level local features because features from the first layer of ResNet-101 are used for K-Means clustering.

In this way, the algorithm aggregates the local explanations of different dimensions into the global prior and maps it to 
a d-dimensional vector for G-LIME explanation, according to the number of variables d desired. The source code is available 
at https://github .com /PaddlePaddle /InterpretDL, where the K-Means clusters can be automatically downloaded.

4. Experiments and analyses

In this section, we show the experimental results assessing the quality of G-LIME explanations in comparison with vanilla 
LIME. Further ablation studies and applicability analyses are also provided.

4.1. Experiment setup

We describe the experiment setup to compare LIME and the proposed G-LIME, where the global priors are obtained 
with the aggregation methods as introduced in Subsection 2.2. We conduct the evaluation experiments using the metrics 
presented in Subsection 2.3, on the CUB-200-2011 dataset [60] with the DNN model ResNet101 [37], introduced as follows. 
Note that more datasets and models are tested in the applicability analyses.

Datasets To validate the effectiveness of G-LIME, we conduct experiments on CUB-200-2011 [60]. CUB-200-2011 contains 
images 200 categories of birds with 5990 and 5790 images for training and test. Each image contains only one birds and 
is annotated with both image-wise and pixel-wise labels by human experts. Note that we use the classification labels for 
training the deep neural networks to address the image classification task. In addition to computer vision tasks, we also 
evaluate G-LIME using NLP and structural datasets and report results in Subsection 4.5.
9
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Fig. 3. Visualization of the same three clusters. Each row shows the same cluster with five images from ImageNet (top) and five images from CUB-200-2011 
(bottom).

Deep neural network Regarding the networks, we carry out experiments and present the results in Subsection 4.2 and 4.4
using ResNet101 [37], AlexNet [39] and EfficientNet [38]— three most used architectures in practice. All these models have 
been initialized with the pre-trained weights on ImageNet [61] and then fine-tuned on CUB-200-2011 with classification 
labels, following the standard fine-tuning procedure. In addition to Convolutional Neural Networks, we also evaluate G-LIME 
using Multi-Layer Perceptrons (MLPs) and NLP models, and report results in Subsection 4.5.

Nomenclature For clarity, we introduce the corresponding name and its math formula of each interpretation approach in 
Table 1. We recall the abbreviations that are used for the global priors: “N” for NormLIME, “AVG” for Averaged-Importance, 
“SP” for LIME-SP, “H” for Homogeneity, as introduced in Subsection 2.2.
10
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Fig. 4. Illustration of the top 5 features during the solution path of G-LIME modified ElasticNet estimator and the corresponding to the superpixels in the 
visualization. Note that when λ1 (controlling the sparsity) decreases, more features emerge and form the solution path.

Fig. 5. Local fidelity comparison, where higher is better for R2 score, and lower is better for MSE.

Fig. 6. Illustration of an image with deletion evaluations on the LIME and G-LIME explanations. We present the images during deletion in (b) and (c) 
according to the LIME and G-LIME explanations respectively, where the top 5 superpixels are removed in both images. The probability change during 
deletion and the area under curve (AUC) are also recorded in (d) and (e). The overall comparison between LIME and G-LIME is reported in Table 2.

4.2. Experiment results

We first show a visual example in Fig. 4 that maps the solution path of G-LIME to the visual explanation, for a bet-
ter understanding of the G-LIME explanation results. To evaluate the trustworthiness of G-LIME, we compute the local 
fidelity [1,48], deletion/insertion [50] and stability [13,48].

Local fidelity Local fidelity measures the (dis)similarity between the surrogate linear model and the DNN model through 
R2 scores and MSE, indicating the faithfulness of the surrogate model to the DNN model in a local region. Fig. 5 shows 
11
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Table 2
Comparison results of deletion evaluations (lower is better ↓) 
using images in the test set of CUB-200-2011. For compari-
son, global explanation algorithms GP-N and GP-AVG obtain 
0.3724 and 0.3635 deletion scores respectively.

Explanation Method Number of Samples

100 1000 3000

LIME 0.2470 0.1679 0.1581
LIME-Path 0.2451 0.1683 0.1574
G-LIME-N 0.2256 0.1615 0.1544
G-LIME-N-Path 0.2270 0.1624 0.1546
G-LIME-AVG 0.2186 0.1586 0.1524
G-LIME-AVG-Path 0.2249 0.1597 0.1527

Fig. 7. Illustration of an image with insertion evaluations on the LIME and G-LIME explanations. We present the images during deletion in (b) and (c) 
according to the LIME and G-LIME explanations respectively, where the top 5 superpixels are inserted in both images. The probability change during 
insertion and the area under curve (AUC) are also recorded in (d) and (e). The overall comparison between LIME and G-LIME is reported in Table 3.

Table 3
Comparison results of insertion evaluations (higher is 
better ↑) using images in the test set of CUB-200-2011. 
For comparison, global explanation algorithms GP-N and 
GP-AVG obtain 0.3049 and 0.3143 insertion scores re-
spectively.

Explanation Method Number of Samples

100 1000 3000

LIME 0.3665 0.5415 0.5692
LIME-Path 0.3782 0.5457 0.5731
G-LIME-N 0.4074 0.5655 0.5843
G-LIME-N-Path 0.4085 0.5617 0.5825
G-LIME-AVG 0.4093 0.5671 0.5846
G-LIME-AVG-Path 0.4029 0.5635 0.5831

the results of local fidelity for comparing LIME and G-LIME. Both metrics are averaged over all images and measured with 
varying the number of generated data points. We can observe a clear gap between LIME and G-LIME from Fig. 5 with 
both metrics favoring G-LIME, and different global aggregation methods do not yield large differences. The local fidelity 
evaluation validates that G-LIME is locally more faithful to model’s behaviors than LIME. We will show in the ablation 
studies that G-LIME with any informative global prior yields more faithful explanations than vanilla LIME.

Deletion/insertion Linear models used by LIME and G-LIME are incapable to fully and globally explain deep models. For 
further supporting the trustworthiness of G-LIME, we conduct evaluation experiments of measuring the deletion and in-
12
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Fig. 8. Stability investigation for LIME and G-LIME explanations using a small number of samples (100). We repeat the random sampling process five times 
(corresponding to the right five columns) and obtain the explanations of LIME (upper row) and G-LIME (bottom row). For clarity, we highlight the three 
most important superpixels given by explanations, which coincide to the visual segmentation ground truth [62]. Visually, the G-LIME explanations are quite 
stable. We report the quantitative comparisons in Table 4.

Table 4
Stability evaluations (lower is better ↓) for LIME and G-LIME expla-
nations using small numbers of samples (≤ 1000), measured by the 
stability metric following [13,48]. We repeat the random sampling 
process five times and report the average results.

Explanation Method Number of Samples

100 200 500 1000

LIME 0.7404 0.2204 0.0404 0.0121
G-LIME-N 0.7027 0.2095 0.0382 0.0112
G-LIME-AVG 0.7193 0.2141 0.0390 0.0114
G-LIME-SP 0.7302 0.2172 0.0395 0.0115
G-LIME-H 0.7316 0.2177 0.0396 0.0116

sertion scores [50]. Fig. 6 illustrates the deletion evaluation process and results, where the probability for the ground truth 
class quickly decays with G-LIME explanation results, indicating that the important features are found and ranked high by 
G-LIME. Similar processes are performed for insertion evaluations, see Fig. 7. We report the overall results of deletion and 
insertion evaluations in Table 2 and Table 3 respectively. Global explanation results are also reported in the captions. The 
deletion and insertion scores are generally coherent, and the scores achieved by G-LIME are clearly better than LIME does. 
Meanwhile, G-LIME-Path gets very similar results to G-LIME and thus we mainly report the results of G-LIME later.

Stability evaluation We show in Fig. 8 the (in)consistency of LIME and G-LIME explanations respectively when the number 
of generated samples is small. Following the stability metric [13,48], we compute the explanation changes between similar 
examples, measured by the expectation of �2 distance over the neighborhood, so as to quantitatively validate G-LIME. We 
report the numerical experimental results in Table 4, showing that G-LIME gets better stability scores than LIME, while the 
difference becomes very small when the number of samples increases.

4.3. Comparison with prevailing and SOTA interpretability methods

In the previous subsection, we presented the experiment results of G-LIME and the vanilla LIME for demonstrating the 
direct improvements over LIME, with full evaluation metrics, including local fidelity, deletion/insertion scores and stability. 
In this subsection, we show the comparison across prevailing and state-of-the-art interpretability methods, e.g., IG [20], 
SmoothGrad [19], Grad-CAM [18] and Anchors [41]. We have also discussed other explanation algorithms [42,43,16,14,40]
in Section 2.1.

While the local fidelity and stability evaluations are only available for surrogate model based methods, such as LIME, we 
compare these algorithms with G-LIME using deletion/insertion scores. Experiment setups are the same as previous, with a 
fine-tuned ResNet101 on CUB-200-2011. From the previous results, we generate 3000 neighbor points to compute the LIME 
and G-LIME explanations. For straightforward comparisons, we also report the metric named the area between perturbation 
curves (ABPC) [63], which computes the difference between insertion and deletion scores for each sample. We also average 
the results of 1000 samples from the test set of CUB-200-2011. Experiment results are shown in Table 5.

We notice from the results that pixel-level explanations (IG and SmoothGrad) get very low deletion scores but low inser-
tion scores too. Low deletion scores may benefit from the fine-grained level of explanations. Low insertion scores indicate 
that they are not able to cover all the important features. Grad-CAM, however, gets very high insertion score while the 
deletion score is the worst among those algorithms. This is probably caused by the low-resolution explanations produced 
13
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Table 5
Comparison with other explanation algorithms, measured in deletion/insertion scores 
and area between perturbation curves (ABPC) score. Each method has been repeated 
three times except Grad-CAM and Anchors, because Grad-CAM does not involve any 
randomness and that Anchors has been done once for its slow convergence.

Deletion ↓ Insertion ↑ ABPC ↑
Grad-CAM [18] 0.1706 0.6423 0.4445
Anchors [41] 0.2418 0.5836 0.3073
IG [20] 0.0605 ± 0.0001 0.5004 ± 0.0003 0.4492 ± 0.0003
SmoothGrad [19] 0.0762 ± 0.0001 0.4649 ± 0.0020 0.3954 ± 0.0022
LIME [1] 0.1501 ± 0.0010 0.5762 ± 0.0019 0.4061 ± 0.0010
G-LIME-N (Ours) 0.1253 ± 0.0017 0.6347 ± 0.0027 0.4998 ± 0.0039
G-LIME-AVG (Ours) 0.1230 ± 0.0022 0.6539 ± 0.0023 0.5155 ± 0.0019

Fig. 9. Deletion/Insertion evaluation scores with varying the regularization effects for �2 norm (LIME) and distance to global prior (G-LIME). We present 
results of two cases where the number of samples is 100 for (a,c) and 1000 for (b,d), and two global priors, i.e., NormLIME [11] and Average [10].

by Grad-CAM, which usually depends on the end layer’s feature map. Anchors, with the objective of high coverage of im-
portant features, get higher insertion scores than LIME. The two variants of G-LIME get a reasonable deletion score and the 
highest insertion scores among all algorithms. More importantly, as for the ABPC score, G-LIME shows clear improvements 
over others, including fine-grained explanations.

4.4. Ablation studies

We present the ablation studies on the choice of �2 regularization effects λ2, as well as the choice of global priors. Note 
that the number of generated samples for computing explanation results is also an important hyper-parameter. However, 
in practice, we find that the evaluation metric score is always better when the number of samples is higher, and we have 
reported the results using different numbers of samples in most cases, so here we do not study this essential factor that is 
clear and presented.

Regularization effects The �2 regularization effect controls the norm of linear weights for LIME and the distance to the global 
prior for G-LIME. Fig. 9 shows the evolution of varying the regularization effects from 0.5 to 5.0, where G-LIME is generally 
better than LIME as previously presented. More important, we find that when the number of samples is small (100), the 
regularization effect favors a large value; when the number of samples is relatively large (1000), it is better to choose a 
relatively small value. It aligns with the pattern of regularization usage, but G-LIME benefits more from the introduction 
of global priors, where in a large range of regularization effects, G-LIME gives better scores than LIME does. Furthermore, 
according our experiments across datasets, the conventional value (1.0) can be safely used as regularization force for an 
14
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Table 6
Comparison among LIME and four variants of G-LIME using different 
global priors. The results reported here are using 1000 generated sam-
ples to compute the explanations with a conventional regularization 
effect (i.e., 1.0).

R2 score ↑ MSE ↓ Deletion ↓ Insertion ↑
LIME 0.3845 0.2409 0.1679 0.5415
G-LIME-N 0.4242 0.2254 0.1615 0.5655
G-LIME-AVG 0.4111 0.2305 0.1586 0.5671
G-LIME-SP 0.4023 0.2340 0.1615 0.5510
G-LIME-H 0.4010 0.2345 0.1662 0.5413

Table 7
Evaluation of LIME and G-LIME when explaining the prediction results of AlexNet [39]
and EfficientNet [38].

Network
Explanation
Method

R2 score ↑ MSE ↓ Deletion ↓ Insertion ↑

AlexNet
LIME 0.3308 0.3273 0.2898 0.3470
G-LIME-N 0.3483 0.3186 0.2591 0.3612
G-LIME-AVG 0.3421 0.3217 0.2559 0.3641

EfficientNet
LIME 0.3061 0.3437 0.2531 0.5514
G-LIME-N 0.3401 0.3267 0.2234 0.5679
G-LIME-AVG 0.3269 0.3334 0.2155 0.5872

appropriate global prior. Both NormLIME [11] and Average [10] are good choices as global priors over the vanilla LIME. We 
will study the difference among the global priors in the following paragraph.

Global priors The global aggregation of local explanations aims to approximate a global explanation for the model. While 
most global aggregations are meaningful, they lead to various priors for our proposed G-LIME, where NormLIME [11] and 
Average [10] are more appropriate in this framework. In most cases, each of the four priors introduced in Subsection 2.2
improves the explanation quality (local fidelity, deletion/insertion scores, and stability) over the vanilla LIME. We show the 
results in Table 6. We recall that the results of stability have been reported in Table 4.

While the studied four global priors have subtle difference, they all show the effectiveness of G-LIME, integrating global 
priors into the local ones within a Bayesian framework. We also find that G-LIME with NormLIME as global prior obtains 
the best local fidelity (as well as the stability) and G-LIME with Average gets the best deletion/insertion scores.

4.5. Evaluations for applicability analyses

In addition to ResNet-101, we conduct experiments using AlexNet [39], a standard convolutional network, and Efficient-
Net [38], an automatically searched network, to evaluate G-LIME explanations on CUB-200-2011. We report the results of 
local fidelity and deletion/insertion scores for these two networks in Table 7, where G-LIME improves all the metrics.

We further explore the applicability of G-LIME on two other visual datasets, StanfordCars [64] and OxfordFlowers [65], 
which focus on images of car models and flowers respectively. For each of them, we fine-tune the ImageNet-pretrained 
ResNet-101 on the training set, and evaluate LIME and G-LIME explanations of the fine-tuned model on the validation set. 
Results on StanfordCars and OxfordFlowers are shown in the first two blocks of Table 8, which validate the improvements 
from G-LIME. Experiments on the visual datasets, including Table 7, also confirm the effectiveness and efficiency of the 
superpixel clustering process for global priors.

Moreover, we extend the application of G-LIME to the structural and text datasets. GiveMeSomeCredits2 is a structural 
dataset for building a model that helps banks to make the best financial decisions, where we trained an MLP model for 
evaluating our explanation methods. IMDb movie review [66] is a text dataset for binary sentiment classification, where we 
trained an LSTM classifier with Glove [67] embeddings and performed the evaluation experiments. Note that for structural 
and text datasets, clustering process is not needed to generate global priors because the features or words are naturally 
shared by all data samples. We use the same explanation evaluation methods introduced in Subsection 4.2 and show the 
results in Table 8. In all datasets and tasks, the local fidelity (both R2 score and MSE) favors G-LIME over LIME, either using 
NormLIME or Averaged-Importance as global prior for G-LIME. Similar results have been obtained for deletion/insertion 
scores.

2 https://www.kaggle .com /c /GiveMeSomeCredit.
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Table 8
Evaluation of LIME and G-LIME on various datasets and tasks. Cars [64] and Flow-
ers [65] are of visual data, Credits (GiveMeSomeCredits) is of structural data, IMDb [66]
is of textual data.

Dataset
Explanation
Method

R2 score ↑ MSE ↓ Deletion ↓ Insertion ↑

Cars
LIME 0.3846 0.3039 0.2460 0.2860
G-LIME-N 0.4294 0.2817 0.2373 0.2846
G-LIME-AVG 0.4144 0.2891 0.2230 0.2924

Flowers
LIME 0.4207 0.2784 0.4132 0.3600
G-LIME-N 0.4633 0.2581 0.4104 0.3782
G-LIME-AVG 0.4539 0.2626 0.4035 0.3807

Credits
LIME 0.2595 0.3867 0.1501 0.0945
G-LIME-N 0.3066 0.2843 0.1444 0.1124
G-LIME-AVG 0.2783 0.2961 0.1425 0.1148

IMDb
LIME 0.5382 0.2290 0.5036 0.2111
G-LIME-N 0.5942 0.2020 0.4951 0.2172
G-LIME-AVG 0.5842 0.2082 0.4960 0.2173

Fig. 10. LIME and G-LIME explanations on benign and adversarial examples. The benign one is correctly and confidently predicted by the model. When 
explaining the adversarial example, we show both the results using the predicted class (the wrong one fooled by the adversarial attack) and the ground 
truth class.

4.6. Analyses on adversarial examples

Recent works show that adversarial robustness is shown to be related to model interpretability [68–70], and that expla-
nations can be used to detect adversarial attacks [71–74]. Here we provide some results and analyses on the adversarial 
examples using LIME and G-LIME.

By using the projected gradient descent as the attacker (with the default hyperparameters used in [75]), the model 
was completely fooled by the adversarial examples. In such scenario, we visualize LIME and G-LIME explanations on the 
benign and adversarial examples. As shown in Fig. 10, we observe that the adversarial attacks affect a lot the explanation 
results of both LIME and G-LIME. Both of them are not able to locate the object in the image, and thus would have similar 
performances if used to detect adversarial examples. Here G-LIME is no longer predominant and we argue that this is 
because the global prior does not provide information on the adversarial examples and the sparsity is affected by the attack 
too.

4.7. Discussions and limitations

G-LIME shares many of the same assumptions as LIME including a linear surrogate around perturbations of a local 
data point, and assumes local explanations should be aligned with the global one. Though, this seems to be a reasonable 
assumption in practice, it still lacks of theoretical supports. Second, G-LIME still suffers from the randomness as LIME, while 
the variance is significantly reduced thanks to the integration of sparsity and global priors. In addition, compared to other 
post-hoc local explanations, G-LIME requires generating global explanations from a number of local data points (albeit this 
can be cached). Last, faced with adversarial examples, G-LIME does not show any advantages over the vanilla LIME.
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5. Conclusion

In this paper, we present G-LIME – a local interpretation algorithm that explains the prediction results of DNN models for 
given samples, using sparse and informative global priors. Specifically, with a dataset representing the population of samples 
(e.g., the training set), G-LIME first pursues the global explanation of the DNN model using the whole dataset. Given a new 
data point and the prediction result of a DNN model for interpretation, G-LIME proposes a modified ElasticNet [35] to 
regularize the estimator of local explanations, using (1) �1-regularization for sparsity and (2) �2-regularization centered 
at the global explanation to provide informative global priors. Least Angle Regression (LARs) has been used to rank the 
importance of every feature in the explanation over the path of �1-regularization. Extensive experiments have been done to 
demonstrate the advantages of G-LIME on a wide range of DNN models for computer visions, NLP, and structural datasets.
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