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Abstract

To improve the performance of deep learning, mixup has been proposed to force the neural
networks favoring simple linear behaviors in-between training samples. Performing mixup
for transfer learning with pre-trained models however is not that simple, a high capacity
pre-trained model with a large fully-connected (FC) layer could easily overfit to the target
dataset even with samples-to-labels mixed up. In this work, we propose SMILE— Sample-
to-feature MIxup for Efficient Transfer LEarning. With mixed images as inputs, SMILE
regularizes the outputs of CNN feature extractors to learn from the mixed feature vectors of
inputs, in addition to the mixed labels. SMILE incorporates a mean teacher to provide the
surrogate "ground truth" for mixed feature vectors. The sample-to-feature mixup regularizer
is imposed both on deep features for the target domain and classifier outputs for the source
domain, bounding the linearity in-between samples for target tasks. Extensive experiments
have been done to verify the performance improvement made by SMILE, in comparisons
with a wide spectrum of transfer learning algorithms, including fine-tuning, L2-SP, DELTA,
BSS, RIFLE, Co-Tuning and RegSL, even with mixup strategies combined. Ablation studies
show that the vanilla sample-to-label mixup strategies could marginally increase the linearity
in-between training samples but lack of generalizability, while SMILE significantly improves
the mixup effects in both label and feature spaces with both training and testing datasets.
The empirical observations backup our design intuition and purposes. Our code is available
at https://github.com/lixingjian/SMILE.

1 Introduction

Performance of deep learning algorithms in real-world applications is often limited by the size of training
datasets. Training a deep neural network (DNN) model with a small number of training samples usually leads
to the over-fitting issue with poor generalization performance. A common yet effective solution is to train DNN
models under transfer learning (Pan et al., 2010) settings using large source datasets. The knowledge transfer
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Figure 1: Performance comparison between the L2 regularization and mixup for fine-tuning an ImageNet
pre-trained model (left) and training from scratch (right). To simulate scenarios with limited target datasets,
we randomly select 50 classes from two transfer learning benchmarks, which are CUB-200-2011 and Stanford-
Cars. As seen, Mixup brings remarkable improvements if training from scratch (right), but this does not
apply to transfer learning (left).

from the source domain1 helps DNNs learn better features and acquire higher generalization performance for
the pattern recognition in the target domain (Donahue et al., 2014; Yim et al., 2017).

In addition to deep transfer learning, another effective strategy for improve generalization performance of
DNN is mixup (Zhang et al., 2018), where the objective is to have DNNs in the learning procedure favor the
linear behaviors in-between training samples. To achieve the goal, the mixup strategy picks up multiple images
from the training set, mixes the samples and labels proportionally to generate a new pair of sample and label
for data augmentation. The regularization effects brought by mixup could help control the complexity of DNN
models (Hanin & Rolnick, 2019; Vapnik, 2013) while largely improving the robustness and generalization
performance (Zhang et al., 2020).

Research Motivation While existing studies about mixup mainly focus on the general setting, to the
best of our knowledge, using mixup in transfer learning has rarely been investigated. A straightforward
conjecture is that, mixup should be also effective in transfer learning, where typical applications have only
limited training examples. In such situations, regularizers aiming to control the model complexity should
be beneficial for better generalization. However, the facts are surprisingly just the opposite. We find that
in deep transfer learning, mixup improves the performance with reduced margins or even downgrades the
performance when the target dataset is small. See Figure 1 for detailed results.

Considering that either transfer learning and mixup is widely proven beneficial, a natural question is raised
as follow,

• Why mixup tends to negatively affect transfer learning when training samples are limited?

Our Analyses Two reasons caused the ineffectiveness of mixup in transfer learning. First of all, we find
fine-tuning with high capacity pre-trained models CAN overfit to the mixup samples/labels. From mixup, we
simply derive a linear interpolation loss to measure the error of linear interpolation between a pair of samples
(x1, y1) and (x2, y2) for the model f(·),

∥f(λx1 + (1− λ)x2)− (λf(x1) + (1− λ)f(x2))∥2
2 , (1)

where a lower linear interpolation loss indicates stronger linear behaviors in-between the samples and usually
better generalization performance (Zhang et al., 2020). Our experiments however find that fine-tuning with

1The term domain indicates the concept of features or knowledge learned from a task. Please note that, this paper focuses on
transferring a pre-trained model on a downstream dataset (labels are available), rather that domain adaptation.
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mixup could obtain a low interpolation loss in the training set while suffering a high interpolation loss in the
test set (≥25% higher interpolation loss on the testing set than the one on training set, please see also in
Section 5). This observation indicates that the linear behaviors gained by mixup regularization could not
well generalize to the testing dataset and overfit to the mixup samples/labels from the training dataset. The
second problem is particularly linked to a major challenge in transfer learning called catastrophic forgetting (Li
et al., 2018; You et al., 2020). The additional interpolated images generated by mix-up drive the fine-tuned
model farther from the starting point, which aggravates the loss of transferable knowledge in the pre-trained
model.

Thus, our research intends to study a way to make mixup strategies generalizable in deep transfer learning
settings while alleviating the knowledge loss during fine-tuning. To achieve the above goal, some non-trivial
technical challenges should be tackled.

• Sample-to-Feature Mixup. A high-capacity pre-trained model, offering a large quantity of well-trained
features, would force a Fully-Connected (FC) Layer to memorize samples and labels mixed-up with
trivial updates to weights of its CNN feature extractor. Though some randomized strategies, such as
RIFLE (Li et al., 2020), could deepen back-propagation in vanilla transfer learning settings, it is still
challenging to reinforce the mixup effects in the CNN feature extractor.

• Mixed-up Feature Vectors. To ensure mixup effects in outputs of CNN feature extractors, a possible
way is to let CNN feature extractors learn from the mixed-up samples and feature vectors, while the
ground-truth feature vectors are usually not available. Thus, surrogate labels of the feature vectors
need to be obtained for any sample in the target dataset before having the CNN trained.

• Cross-Domain Generalizability. A pre-trained DNN usually is capable of behaving linearly under
interpolation of the source dataset. During the fine-tuning procedure, it is reasonable to doubt that
such linear behaviors in source domain might be forgotten (Chen et al., 2019). To improve the
generalization performance, there thus needs to preserve the linear behaviors in the source domain
and transfer such ability to the target domain during fine-tuning.

Our Work To address above technical challenges, in this work, we propose SMILE—Sample-to-feature
Mixup strategies for Efficient Transfer Learning. Instead of regularizing mixup effects in target label spaces
(i.e., sample-to-label mixup), SMILE enables the sample-to-feature mixup through regularizing the CNN feature
extractor to learn from the surrogate of “fine-tuned” feature vectors of mixed-up images even when the CNN
has not yet been well-tuned on the target domain. To the best of our knowledge, this work has made three
sets of contributions as follows.

1. We study the problem of regularizing DNNs to enjoy mixup effects under deep transfer learning
settings, where the major concern is to avoid the overfitting to mixed-up samples and labels, using a
high-capacity pre-trained model but with a small target training dataset. We elaborate the technical
issues, and propose to solve the problem through enabling sample-to-feature mixup, where obtaining
the feature vectors for mixup and ensuring cross-domain generalizability of linear behaviors become
the key challenges.

2. We propose SMILE—Sample-to-feature mixup for efficient transfer learning, where sample-to-feature
mixup, through either the target deep feature and the source label space, has been used as the core
framework of the solution. Given two samples drawn from the target domain as the input, SMILE
linearly combines two samples proportionally and sends the mixed-up sample to the target model. It
constrains the Euclidean distance between the output of target model’s CNN feature extractor and
a mixed-up feature vector (i.e., linear combination of a mean teacher model’s outputs for the two
samples) via a sample-to-feature mixup. Moreover, to obtain cross-domain generalizability, SMILE
trains an additional FC classifier for the target network to adapt the target dataset but in the
source domain. It regularizes the target network using sample-to-label mixup to learn from the linear
combination of classification results on source domain, whose labels are also features for the target
domain. SMILE also optimizes the target model via vanilla sample-to-label mixup using the mixed-up
label (i.e., linear combination of ground-truth labels).
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Figure 2: The Architecture of SMILE: Deep Transfer Learning with Sample-to-feature Mixup Regularization.
To fully exploit the capacity of the source model, we incorporate two components LFE and LFC, beyond the
vanilla mixup LMXP. LFE focuses on the deep features gt and LFC is imposed on the source labels through
an auxiliary classifier z

′

t. We feed original images in the source model, and mixed images in the target model
during fine-tuning. Mean teacher is performed on the source model to provide more accurate pseudo ground
truth for mixed features gt and z

′

t. After fine-tuning, we use only the feature extractor and classifier of the
target model for prediction.

3. We carry out extensive experiments using a wide range of source and target datasets, and compare
the results of SMILE with a number of baseline algorithms, including fine-tuning with weight decay
(L2) (Donahue et al., 2014), fine-tuning with L2-regularization on the starting point (L2-SP) (Li et al.,
2018), DELTA (Li et al., 2019), Batch Singular Shrinkage (BSS) (Chen et al., 2019), RIFLE (Li et al.,
2020), Co-Tuning (You et al., 2020) and RegSL (Li & Zhang, 2021) with/without mixup strategies.
The experiment results showed that SMILE can outperform all these algorithms with significant
improvement. The ablation studies show that (1) sample-to-feature mixup design is significantly
better than vanilla sample-to-label mixup for deep transfer learning; and (2) the proposed sample-to-
label mixup on the source domain can further improve the generalization performance.

2 Related Work

In this section, we first introduce the related works from deep transfer learning’s perspectives, then we discuss
the most relevant work to our study.

2.1 Deep Transfer Learning

To enable transfer learning for DNNs, fine-tuning (Donahue et al., 2014) has been proposed to first train a
DNN model using the large (and possibly irrelevant) source dataset (e.g. ImageNet), then uses the weights of
the pre-trained model as the starting point of optimization and fine-tunes the model using the target dataset.
In this way, by sharing the rich and diverse knowledge contained in large source datasets, the fine-tuned
model is usually capable of handling the target task with better generalization performance. Furthermore,
authors in (Yim et al., 2017; Li et al., 2018; 2019) propose transfer learning algorithms that regularize the
training procedure using the pre-trained models, so as to constrain the divergence of the weights and feature
maps between the pre-trained and fine-tuned DNN models. Later, the work (Chen et al., 2019; Wan et al.,
2019) introduce new algorithms that prevent the regularization from hurting the adaptation to the target
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domain in transfer learning, where (Chen et al., 2019) propose to truncate the tail spectrum of the batch of
gradients while (Wan et al., 2019) propose to truncate the ill-posed direction of the aggregated gradients. In
addition to the aforementioned strategies, algorithms based on the multi-task learning paradigm have been
used for deep transfer learning, such as (Ge & Yu, 2017; Cui et al., 2018).

While all above algorithms enable knowledge transfer from source datasets to target tasks, they unfortu-
nately perform poorly due to the catastrophic forgetting and negative transfer. Most transfer learning
algorithms (Donahue et al., 2014; Yim et al., 2017; Li et al., 2018; 2019) consist of two steps – pre-training
and fine-tuning. Given the features that have been learned in the pre-trained models, either forgetting some
good features during the fine-tuning process (catastrophic forgetting) (Chen et al., 2019) or preserving the
inappropriate features/filters to reject the knowledge from the target domain (negative transfer) (Li et al.,
2019; Wan et al., 2019) would hurt the performance of transfer learning. In this way, proper compromises
should be made between the features learned from both source/target domains during the fine-tuning process,
where multi-task learning with Seq-Train (Cui et al., 2018) and Co-Train (Ge & Yu, 2017) might suggest
feasible solutions to well-balance the knowledge learned from the source/target domains, through fine-tuning
the model with a selected set of auxiliary samples (rather than the whole source dataset) (Cui et al., 2018) or
alternatively learning the features from both domains during fine-tuning (Ge & Yu, 2017). A recent study in
medical imaging (Wang et al., 2022) employs the Co-Train fashion with auxiliary attributes during both the
pre-training and fine-tuning step.

Some other studies (Zhong et al., 2020; Wang et al., 2021; Abuduweili et al., 2021) intend to improve the
generalization of the target model by further exploiting the target data. For example, Bi-Tuning (Zhong et al.,
2020) incorporates self-supervised learning on top of the standard supervised fine-tuning. Self-tuning (Wang
et al., 2021) and Adaptive Consistency Regularization (Abuduweili et al., 2021) consider a more practical
scenario that a set of unlabeled target data is available. They find that fine-tuning can be substantially
promoted by reasonably utilizing the unlabeled data.

2.2 Connections to Our work

The most relevant studies to our algorithm are (Verma et al., 2019; Yun et al., 2019; Li et al., 2019; Chen
et al., 2019; Li et al., 2020; You et al., 2020; Wang et al., 2022). While the first two works (Verma et al., 2019;
Yun et al., 2019) propose to improve mixup and its derivatives for data augmentation through interpolating
the feature spaces, the following three works (Li et al., 2019; Chen et al., 2019; Li et al., 2020; You et al.,
2020) focus on improving deep transfer learning through regularizing the feature or label spaces. Authors in
(Wang et al., 2022) impose a proximal regularizer to constrain the parameter distance from the pre-trained
model, and an auxiliary task that predicts a set of pre-defined attributes such as age, race and so on. In
comparison, our method serves as a general algorithm that is free of additional domain knowledge.

The manifold mixup strategy (Verma et al., 2019) has been proposed to smooth the decision boundary of
DNN classifiers using mixed-up feature maps and labels, in a feature-to-label mixup fashion. On the other
hand, CutMix (Yun et al., 2019) also propose a sample-to-feature data augmentation strategy, where the
algorithm fuses two images into one and forms a new feature map accordingly, with respect to the localizable
visual features in two images. Compared to above works, the major technical difficulty of SMILE is that above
algorithms use feature maps extracted from CNN models directly, while SMILE regularizes the output of CNN
feature extractor when accurate estimates of feature vectors are not available (the CNN is under fine-tuning
to adapt the target dataset).

While (Li et al., 2019; Chen et al., 2019) proposed to improve the feature-wise knowledge distillation or
spectral regularization for transfer learning, (Li et al., 2020) studies way to regularize the pre-trained CNN
feature extractor, during fine-tuning, by incorporating randomness from FC layers. Compared to above
algorithms, SMILE is proposed to solve the problem of overfitting to mixup under deep transfer learning
settings. Our ablation studies in Section 4 show that the simple combination of fine-tuning and mixup
strategies does not perform well in transfer learning settings from both the preservation of linear behaviors and
generalization performance aspects. SMILE makes unique contributions in proposing novel sample-to-feature
mixup strategies to improve performance in transfer learning with pre-trained models.
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3 SMILE: Sample-to-feature Mixup for Efficient Transfer Learning

In this section, we first introduce the overall framework of SMILE, where the architectures of deep transfer
learning with Sample-to-feature mixup regularization is presented. Then, we specify the design of the proposed
regularizer and discuss the mixup effects incorporated by SMILE.

3.1 Overall Framework

Given a target training dataset D = {(x1, y1), (x2, y2)... (xn, yn)} and an initial model ωs pre-trained with
the source dataset, SMILE learns a model ω to adapt the target dataset by a fine-tuning procedure. Since the
source model is involved during fine-tuning, we use subscripts t and s to distinguish between the target and
source model, superscripts to denote the training iteration. Specifically, SMILE initializes the target model
ω0

t with the pre-trained source model ωs. For each training iteration, SMILE updates the target model ωt

through minimizing a loss function as follow,

min
ω

{
L(ω, ωs) = 1

n

n∑
i=1

LMXP(ω, xi, yi) + LReg(ω, ωs, xi)
}

, (2)

where LMXP(ω, xi, yi) refers to the vanilla sample-to-label mixup loss based on target model on the target
domain D , and LReg(ω, ωs, xi) refers to the loss for Sample-to-feature mixup regularization based on both
the source and target model. Note that the computation of LReg adopts only the target dataset D as the
input and does not rely on labels.

The regularizer LReg contains two components, LFE and LFC, where FE refers to feature extractor and FC
refers to fully-connected classifier. For better exploiting the capacity of the source model, LFE and LFC

leverage the fine-tuned target deep features and the auxiliary source labels, respectively. We present detailed
implementations in Section 3.3.

Figure 2 presents the architecture of SMILE.

3.2 Vanilla Mixup

We first introduce the formulation of vanilla mixup (Zhang et al., 2017). Given a deep neural network f , we
denote its classifier output as z and deep feature as g. Since both z and g depend on the input data and their
corresponding parameters, they are formulated as functions for simpleness. Vanilla mixup aims to minimize
the linear interpolation loss in the target label space, which can be formulated as

LMXP(ω) = E
λ∼Beta(α,α)

E
xi,xj∼D

||zt (Mixλ(xi, xj); ω)−Mixλ(yi, yj)||22 , (3)

where the operator Mixλ(u, v) = (1− λ) · u + λ · v refers to the linear combination of two inputs. We follow
the vanilla mixup (Zhang et al., 2018) to sample the linear combination coefficient λ from a symmetric Beta
distribution λ ∼ Beta(α, α). The Beta distribution is usually used to sample a random proportion, e.g. λ in
mixup, since it’s the conjugate prior for the Bernoulli distribution. A larger α tends to sample a balanced
mixture, i.e. λ is more likely near 0.5, and a smaller α leads to λ near 0 or 1.

3.3 Deep Transfer Learning with Regularization

Omitting the notation of input data xi, we present the Sample-to-feature mixup regularizer as follow,

LReg(ω, ωs) =γFE · LFE(ω, ωs) + γFC · LFC(ω, ωs), (4)

where γFE and γFC refer to the weight of the two terms, the term LFE(ω, ωs) refers to the sample-to-feature
mixup regularizer which borrows general knowledge from the source domain over the target dataset D, and
the term LFC(ω, ωs) refers to the sample-to-label mixup regularizer on the label space of the source domain
(e.g., 1000 classes when the model was pre-trained using ImageNet).
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Specifically, given a deep neural network f , we denote its classifier output as z and deep feature as g. Since
both z and g depend on the input data and their corresponding parameters, they are formulated as functions
for simpleness. Thus, the sample-to-feature mixup regularizer based on target and source models is defined
as

LFE(ω, ωs) = E
λ∼Beta(α,α)

E
xi,xj∼D

||gt (Mixλ(xi, xj); ω)−Mixλ(gs(xi; ωs), gs(xj ; ωs))||22 , (5)

where g(xi; ω) refers to the CNN feature extractor output based on weight ω and the sample xi. This term
encourages DNN to learn linear behaviors from samples to hidden features.

Further, the sample-to-label mixup regularizer based on target and source models on the label space of source
domain is defined as

LFC(ω, ωs) = E
λ∼Beta(α,α)

E
xi,xj∼D

||z′
t (Mixλ(xi, xj); ω)−Mixλ(zs(xi; ωs), zs(xj ; ωs))||22 , (6)

where z′
t(xi; ω) refers to the output of an auxiliary classifier (Fully-Connected) of the target model with xi on

ω and zs(xi; ωs) refers to the classifier output of the source model with xi on ωs. Both classifiers z′
t and zs

are in the source domain (e.g., with softmax outputs in 1,000 dimensions when the model is pre-trained using
ImageNet). More specifically, the FC layer in z′

t is also initialized with the weights of the FC layer in the
pre-trained source model ωs.

The vanilla sample-to-label mixup regularizer LMXP is derived from the standard implementation of mixup
strategy (Zhang et al., 2018) based on target model using the target dataset D. Algorithm 1 presents the
design of the overall training procedure of SMILE.

3.4 Incorporating with a Mean Teacher

Note that an advantage of our method is the compatibility with mean teacher, which is widely used in
semi-supervised learning problems (Tarvainen & Valpola, 2017) to generate pesudo labels. So far as we know,
it has hardly been utilized in deep transfer learning to promote pesduo features. Specifically, we periodically
update the source model ωs by the fine-tuned model in a moving average manner.

Algorithm 1: Deep Transfer Learning with SMILE
Input : D: target training data, ωs: pre-trained source model, η: learning rate, K: training iterations,

α: hyperparameter for Beta distribution ;
Output : ωK

t : final learned target model after K iterations;
1 begin
2 ω0

t ← ωs
3 for k ← 1 to K do
4 /*Data Sampling and Mixing*/
5 B← mini-batch sampling from D
6 λ ∼ Beta(α, α)
7 Bm ← λ ·B + (1− λ) · Shuffle(B)
8 /*Calculate Vanilla Mixup and Sample-Feature Mixup Loss*/
9 Calculate LMXP based on zt(Bm, ωk−1

t )
10 Calculate LFE based on gs(Bm, ωs) and gt(B, ωk−1

t )
11 Calculate LFC based on zs(Bm, ωs) and z

′

t(B, ωk−1
t )

12 /*Updating the Target Model with SGD*/
13 L(ωk−1

t , ωs) = γFE · LFE + γFC · LFC + LMXP

14 gk ← ∇L(ωk−1
t , ωs)

15 ωk
t ← ωk−1

t − η · gk

16 return ωK
t
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4 Experiments

We evaluate our method on a wide range of tasks, covering different kinds of datasets, pre-trained models,
data scales and model architectures. Through exhaustive experiments, SMILE is compared against multiple
state-of-the-art fine-tuning algorithms including L2 (Donahue et al., 2014), L2-SP (Li et al., 2018), DELTA (Li
et al., 2019), BSS (Chen et al., 2019), RIFLE (Li et al., 2020), Co-Tuning (You et al., 2020) and RegSL (Li
& Zhang, 2021). To achieve a comprehensive evaluation, we also compare our method with relevant data-
augmentation strategies including Mixup (Zhang et al., 2018), Manifold Mixup (Verma et al., 2019) and
CutMix (Yun et al., 2019).

Table 1: Characteristics of the target tasks.
target dataset task category source task architecture # training # classes
CUB-200-2011 Object Recognition ImageNet ResNet-50 5,994 200
Stanford-Cars Object Recognition ImageNet ResNet-50 8,144 196
FGVC-Aircraft Object Recognition ImageNet ResNet-50 6,677 100
MIT-Indoor-67 Scene Classification Places365 ResNet-50 5,356 76
Food-101 Object Recognition ImageNet EfficientNet-B4 75,000 101

4.1 Image Classification

We first present the experiment results based on image classification tasks using a wide range of transfer
learning algorithms and datasets.

4.1.1 Datasets and Models

We conduct experiments on three popular object recognition datasets: CUB-200-2011 (Wah et al., 2011),
Stanford Cars (Krause et al., 2013) and FGVC-Aircraft (Maji et al., 2013), which are intensively used in
state-of-the-art transfer learning literatures (Chen et al., 2019; Li et al., 2020; You et al., 2020). Each of
these datasets contains about 6k - 8k training samples. We use ImageNet (Deng et al., 2009) pre-trained
ResNet-50 (He et al., 2016) as the source model. For each dataset, we create four subsets with different
number of categories and training examples, divided into two experimental groups. For the first group, we
first randomly select 25% of all the categories from each of these standard datasets. Then we randomly
sample 400 and 800 training samples from the selected categories. For the second group, we use all categories,
while evaluate with 15% or 100% training samples respectively, following the practice in existing baselines
BSS (Chen et al., 2019) and Co-tuning (You et al., 2020). Among these, the last setting uses the entire
dataset, which reflects the performance when adaptation is relatively sufficient, while the remaining three rely
more on knowledge transfer from the pre-trained model. The first group simulates real world datasets with
relatively fewer categories and more instances pre category, while the second group (15% data) simulates the
opposite.

To further confirm the performance improvement by SMILE is independent with the choice of pre-trained
datasets and model architectures, we conduct additional experiments comparing our method with competitive
baselines. Specifically, we use the Places365 (Zhou et al., 2017) pre-trained ResNet-50 to perform fine-tuning
on MIT-Indoors-67 (Quattoni & Torralba, 2009), which is a scene classification task. We also evaluate our
method on a more powerful model EfficientNet-B4 (Tan & Le, 2019) designed by NAS over a large scale
dataset Food-101 (Bossard et al., 2014). The descriptions about the benchmarks used in image classification
tasks are summarized in Table 1.

4.1.2 Training Details

We apply standard data augmentation strategies for image pre-processing composed of resizing to 256× 256,
random flipping and random cropping to 224× 224 during training. For inference, the test image is resized to
256× 256 and then center cropped to 224× 224. We do not use post-processing methods such as ten-crop
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Table 2: Comparison of top-1 accuracy (%) on transfer learning benchmarks. The notation C:X/N:Y refers
to using Y examples from X selected categories.

Dataset Method Dataset

C:25%/N:400 C:25%/N:800 C:All/N:15% C:All/N:100%

CUB-200-2011

L2 (Donahue et al., 2014) 55.59±1.02 74.85±0.12 44.70±0.17 80.64±0.30
Mixup (Zhang et al., 2017) 52.39±0.68 73.02±0.11 44.27±0.31 81.86±0.20
Manifod Mixup (Verma et al., 2019) 55.38±0.16 74.09±0.49 49.57±0.30 83.09±0.26
CutMix (Yun et al., 2019) 28.08±1.261 59.89±0.94 29.73±0.26 81.52±0.25
L2-SP (Li et al., 2018) 54.38±0.32 73.90±0.22 45.30±0.23 81.58±0.10
DELTA (Li et al., 2019) 58.15±0.26 75.84±0.08 47.88±0.15 82.21±0.15
BSS (Chen et al., 2019) 54.99±0.73 74.14±0.34 46.41±0.09 81.10±0.04
RIFLE (Li et al., 2020) 53.68±0.89 73.05±1.09 44.13±0.38 81.94±0.06
Co-Tuning (You et al., 2020) 57.98±0.08 75.11±0.47 49.98±0.23 82.60±0.03
RegSL (Li & Zhang, 2021) 57.62±0.88 75.51±0.44 46.92±0.28 80.20±0.17
SMILE 62.13±0.55 77.27±0.35 51.73±0.04 83.62±0.07

Stanford-Cars

L2 (Donahue et al., 2014) 61.17±0.36 82.73±0.59 43.01±0.53 90.14±0.12
Mixup (Zhang et al., 2017) 60.25±0.68 83.60±0.02 45.73±0.15 91.51±0.18
Manifod Mixup (Verma et al., 2019) 64.38±0.73 85.01±0.18 50.53±0.22 91.88±0.16
CutMix (Yun et al., 2019) 47.89±0.78 76.71±0.36 37.62±0.14 92.56±0.20
L2-SP (Li et al., 2018) 61.00±0.28 82.05±0.05 44.12±0.33 90.61±0.12
DELTA (Li et al., 2019) 62.05±0.13 82.1±0.44 43.27±0.27 90.86±0.08
BSS (Chen et al., 2019) 64.97±0.69 83.81±0.39 47.45±0.23 91.14±0.04
RIFLE (Li et al., 2020) 62.85±0.22 83.57±0.43 43.61±0.07 91.08±0.12
Co-Tuning (You et al., 2020) 66.05±0.41 81.05±0.39 44.29±0.42 91.19±0.11
RegSL (Li & Zhang, 2021) 60.12±0.63 82.91±0.08 42.52±0.37 91.02±0.05
SMILE 65.17±1.11 85.90±0.16 50.93±0.17 92.21±0.05

FGVC-Aircraft

L2 (Donahue et al., 2014) 59.63±1.11 79.57±0.18 51.13±0.45 88.27±0.51
Mixup (Zhang et al., 2017) 65.20±0.80 84.53±0.62 54.42±0.55 89.33±0.17
Manifod Mixup (Verma et al., 2019) 61.10±0.56 80.40±1.90 57.97±0.61 89.53±0.24
CutMix (Yun et al., 2019) 53.50±0.80 77.60±0.73 44.10±0.78 88.48±0.27
L2-SP (Li et al., 2018) 54.70±0.73 76.13±0.82 48.85±0.70 87.97±0.66
DELTA (Li et al., 2019) 53.47±0.24 71.73±1.02 51.05±0.38 88.92±0.25
BSS (Chen et al., 2019) 61.40±1.13 81.47±0.24 52.61±0.11 88.47±0.16
RIFLE (Li et al., 2020) 60.97±0.49 79.87±0.38 52.13±0.31 89.45±0.44
Co-Tuning (You et al., 2020) 62.98±0.72 80.03±0.04 52.05±0.43 88.19±0.33
RegSL (Li & Zhang, 2021) 61.87±0.37 79.40±0.92 51.64±0.43 88.87±0.26
SMILE 68.40±0.33 84.57±0.29 60.04±0.33 90.16±0.15

ensemble (Liang et al., 2020). We train all models using SGD with the momentum of 0.9, weight decay
of 10−4 and batch size of 48. We train 15,000 iterations for Food-101 considering its large scale and 9,000
iterations for the remaining datasets. The initial learning rate is set to 0.001 for MIT-Indoor-67 due to its
high similarity with the pre-trained dataset Places365 and 0.01 for the remaining. The learning rate is divided
by 10 after two-thirds of total iterations. Each experiment is repeated five times and we report the average
top-1 classification accuracy and standard derivations for uncertainty quantification.

For hyper-parameter search, we use a simple three-fold cross validation on the original training set from
γFE ∈ [0.01, 0.1] and γFC ∈ [0.01, 0.1]. The selected best configurations are used in all experiments. As for
baseline methods, we use the recommended choices of hyper-parameters reported in corresponding papers.

1We notice that CutMix performs surprisingly worse in low-data regime (e.g., less than 1000 training examples in total).
However, when fine-tuning with full data, CutMix always outperforms vanilla fine-tuning. This phenomenon is consistent with
our preliminary experiments in Introduction. A conjecture is that, when training data are insufficient, the operation of cutting
and replacing patches might cause much severer over-fitting risks. The CutMix results can be reproduced by our published code.

9



Published in Transactions on Machine Learning Research (01/2023)

Table 3: Comparison of top-1 accuracy (%) with different transfer learning algorithms on more task types
and architectures.

Dataset Method Sampling Rates

30% 50% 100%

MIT-Indoor-67

L2 (Donahue et al., 2014) 78.68±0.20 80.80±0.18 82.00±0.21
Mixup (Zhang et al., 2017) 77.44±0.44 80.28±0.28 82.87±0.50
DELTA (Li et al., 2019) 80.80±0.22 82.80±0.25 83.67±0.18
BSS (Chen et al., 2019) 78.23±0.50 80.35±0.28 82.15±0.22
RIFLE (Li et al., 2020) 76.76±0.08 78.71±0.33 81.78±0.07
SMILE 82.00±0.14 83.54±0.20 85.37±0.16

Food-101

L2 (Donahue et al., 2014) 80.25±0.28 83.43±0.15 86.77±0.03
Mixup (Zhang et al., 2017) 82.63±0.11 84.93±0.06 87.82±0.06
DELTA (Li et al., 2019) 81.38±0.08 84.07±0.06 87.34±0.07
BSS (Chen et al., 2019) 81.13±0.04 83.96±0.09 87.33±0.03
RIFLE (Li et al., 2020) 81.13±0.04 83.82±0.02 87.29±0.11
SMILE 82.84±0.16 85.25±0.09 88.20±0.10

4.1.3 Results

As observed in Table 2, our proposed SMILE achieves remarkable improvements to vanilla fine-tuning on three
standard benchmarks, and outperforms all state-of-the-art methods. As the size of training data becomes
smaller, our method yields more significant benefits, e.g. SMILE outperforms vanilla fine-tuning by more than
8% on FGVC-Aircraft when only 15% training samples are used.

Our method is shown scalable to more challenging datasets. For MIT-Indoor-67, vanilla fine-tuning with
a small learning rate is quite competitive as the pre-trained model is highly adaptable for the target task.
While for large-scale dataset Food-101, the benefit from all fine-tuning algorithms becomes less. As shown in
Table 3, SMILE still delivers decent performance on these datasets.

As for the time complexity, although SMILE requires an extra forward pass, the actual running time increases
less than 20% against vanilla fine-tuning.

4.2 Natural Language Processing

We also evaluate SMILE on the text classification task using powerful transformer-based architecture, showing
that our method can be applied to NLP tasks.

4.2.1 Datasets and Models

To carry out experiments of transfer learning for NLP tasks, we use the fine-grained sentiment classification
task SST-5, which offers the Stanford Sentiment Treebank datasets with five categories. The pre-trained
model in this experiment is base model of BERT (Devlin et al., 2018) with 12 transformer blocks and 12
attention heads.

4.2.2 Training Details

We fine-tune the pre-trained BERT model with the batch size to 24 for 3 epochs, using Adam optimizer with
a learning rate of 2× 10−5 while incorporating with deep transfer learning algorithms including L2-SP and
BSS (Chen et al., 2019) and vanilla Mixup.

4.2.3 Results

Results are shown in Table 4, where we include performance based on LSTM (Tai et al., 2015), CNN (Kim,
2014), and the vanilla BERTbase reported in (Munikar et al., 2019) for comparisons. We also find that both
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mixup and SMILE outperform standard fine-tuning and SMILE achieves more improvements. Regularizers
L2-SP and BSS without mixup are not superior to standard fine-tuning in this task.

5 Analysis

5.1 Ablation Study

We here present an ablation study to exhibit the unique contribution corresponding to each component in
our framework. Specifically, we evaluate the performances of SMILE by removing LFE and LFC respectively.
As observed in Table 5, while they both make non-trivial contributions, the influence of the sample-to-feature
mixup regularizer LFE is more significant than the feature-to-label regularizer LFC.

Furthermore, we consider simple combinations of mixup strategies and state-of-the-art transfer learning
algorithms. Specifically, we employ DELTA (Li et al., 2019) to improve knowledge distillation and RIFLE (Li
et al., 2020), BSS (Chen et al., 2019) to alleviate negative transfer, both on top of the vanilla mixup. As
shown in Figure 3, though such a straightforward combination with vanilla mixup sometimes improves either
transfer learning and mixup, SMILE is still significantly superior.
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Figure 3: Comparison of top-1 accuracy (%) with various SOTA transfer learning baselines combined with
Mixup.

5.2 Discussions on Linear Interpolation Effects

One major assumption of our work is that fine-tuning with pre-trained models would overfit to mixed-up
samples and labels. In order to verify this assumption and interpret the performance improvement of SMILE,
we now investigate the linear interpolation effects in fine-tuning. It is worth noting that, the terminology
overfit and generalize in this section are particularly w.r.t. the linear interpolation, rather than the model
accuracy in general sense. For example, a model overfits to mixed-up samples and labels means, the model
remembers all interpolated labels for the mixed training samples, but a mixture of two test samples fails to
get the prediction that lies on the linear interpolation of their respective predictions.

Table 4: Experimental results on NLP task SST-5.
Methods Accuracy
LSTM (Tai et al., 2015) 46.4
CNN (Kim, 2014) 48.0
BERTbase (Devlin et al., 2018) 53.2
BERTbase w. Mixup 53.7
BERTbase w. L2-SP (Li et al., 2018) 53.2
BERTbase w. BSS (Chen et al., 2019) 53.4
BERTbase w. SMILE 54.6

Table 5: Ablation Study on the CUB-200-2011
dataset.

Methods Sampling Rates
30% 100%

SMILE 70.42 83.62
SMILE w/o. LFC 69.68±0.12 83.11±0.19
SMILE w/o. LFE 68.15±0.27 82.92±0.20
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5.2.1 Measuring Linear Interpolation Effects

To quantify the linear interpolation effects, we define metric to quantify the effect of linear interpolation.
Derived from standard mixup (Zhang et al., 2018), we introduce a generalized form of interpolation loss (IL)
w.r.t a function f employing its own outputs as labels, eliminating the influence of the faithfulness of the
approximation, i.e. how the learned function fits the ground truth f∗, as follows:

IL(f) =Ex,x′∼DEδ1,δ2∼Pδ
Eλ∼Pλ

Dit
λ (f(Mixλδ1+(1−λ)δ2(x, x′)),

f(Mixδ1(x, x′)), f(Mixδ2(x, x′))),
(7)

where Dit
λ refers to the Euclidean distance between the output w.r.t the interpolated inputs and the

proportionally mixed outputs. λ conforms to the Beta distribution as described in Section 3.2, and δ1, δ2 are
sampled from a uniform distribution between 0 and 1. Note that Equation (7) is a metric for evaluating to
what degree does a model favor linear behaviors, rather than an optimization objective.

Compared with original form of linear interpolation loss used in standard mixup (Zhang et al., 2018), the
metric defined in Equation (7) has the following two merits.

• Equation (7) is feasible for measuring linear interpolation effects for both the feature layer (noted as
Feature-IL when considering the CNN feature extractor as the function f) and the label outputs
(noted as Label-IL when considering the classifier’s outputs as f).

• Equation (7) relies on the network’s own outputs rather than external labels, and thus the influence
of label fitting (e.g. model accuracy) is disentangled from the evaluation of linear interpolation.

5.2.2 Sample-to-Feature Mixup: Linear Interpolation Effects and Generalization

We use Eq 7 to measure Label-IL using the classifier outputs and Feature-IL using the last hidden layer of
ResNet-50 for different transfer learning methods, with CUB-200-2011 (with 30% sampling rates) as the
training set for all methods. Several arguments can be deduced from results in Table 6.

• More Data, Better Generalization, and Lower Label-IL and Feature-IL. There is no doubt to assume
that, in practice, a model trained with more data should enjoy better generalization performance. In
addition to improve the testing accuracy , we find that, when we involve additional training samples,
both Label-IL and Feature-IL would be lower on the testing sets, compared to vanilla fine-tuning.

• Fine-tuning with vanilla mixup is NOT generalizable even in the label space, due to the lack of linear
interpolation in feature spaces. As shown in Table 6, although Label-IL of the vanilla mixup is
significantly lower on the training set than other methods, its Label-IL is high on the testing set
(not generalizable). Furthermore, compared to other methods on both training/testing sets (even
Fine-tuning on the testing set), Feature-IL of the vanilla mixup is high, i.e., poor linear interpolation
in feature spaces.

• Sample-to-Feature Mixup could ensure the generalizability of mixup effects in the label space, as SMILE
is with low Feature-IL and Label-IL on both training and testing sets. While SMILE achieves the
lowest Feature-IL on both training and testing datasets, it also achieves the lowest testing Label-IL.
The comparisons with vanilla mixup suggest that doing mixup in the label space is just not enough
for fine-tuning. Besides the quantitative results, we in Appendix B present some visualized cases of
interpolation behaviors on the feature space with different fine-tuning methods.

These arguments solidify our motivation of sample-to-feature mixup for fine-tuning.2

2Note that the over-fitting in the label space may not be directly calibrated with training/test accuracy as there exists other
factors influence the accuracy, e.g. mixup also benefits from the effect of label smoothing (Singh & Bay, 2019).
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Table 6: Feature-IL and Label-IL for different fine-tuning methods over the training (sampling the CUB-200-
2011 training set by 30%) and testing dataset. Lower is better. Add. Data refers to involving the remaining
70% training examples for fine-tuning. However, the interpolation loss for the training set is still calculated
on the original 30%.

Method Label-IL Feature-IL
Train Test Train Test

Finetune 1.80 1.92 1.92 1.93
Finetune + Add. Data 1.85 1.88 1.58 1.63
Finetune + MXP 1.65 2.00 1.98 2.02
SMILE 1.75 1.82 1.48 1.53

5.2.3 Feature-to-Label Mixup: déjà vu can help.

To enforce linear behaviors on features, SMILE inherits the Feature-to-Label classifier (i.e., the FC layer) from
the source model as the initialization of fine-tuning. It is because we assume that the label space of the
source task is partially overlapped with the target task. Thus, the FC layer with a considerable number of
parameters contains useful information for the target task. This has been investigated by correlating the label
spaces between these two tasks in recent studies (You et al., 2020). Furthermore, although it is impossible
for SMILE to mix the feature vectors extracted from the fine-tuned CNN during the fine-tuning procedure,
Feature-to-Label Mixup still works well as the FC classifier has been well-trained on the source datasets,
which provides rich semantic information.

5.3 Discussions on Catastrophic Forgetting

Here we present discussions to confirm our hypothesis stated in the introduction, i.e. the vanilla mixup
aggravates the risk of catastrophic forgetting, while our approach alleviates this problem by reusing rich
source knowledge. As suggested by existing literature (Li et al., 2018; Gouk et al., 2021; Li & Zhang, 2021),
we use the parameter distance between the fine-tuned and pre-trained model to measure the degree of
catastrophic forgetting. We use the same experimental setting as that used in Section 5.2. As shown in
Table 7, both mixup and SMILE get the parameter distance even larger than vanilla fine-tuning with double
training examples, while SMILE alleviates the deviation caused by mixup.

Table 7: Parameter distance between the fine-tuned and pre-trained model with different methods. The
distance is calculated as the summation of the distance w.r.t. each layer, measured by the Euclidean distance
between two tensors. The FC layers are not included when calculating the distance.

Method Finetune Finetune (2x data) Finetune+mixup Finetune+SMILE
Distance 32.3 37.3 90.1 60.7

5.4 Role of Source Model

Our method is effective particularly in transfer learning, and a reliable teacher model is vital to the proposed
framework. In the setting of fine-tuning, the source model acts as a good starting point to provide supervision
for both cross-domain mixed labels and in-domain mixed features. Thereby, our method is not directly
feasible for general-purpose supervised learning. The reason are two folds.

In general supervised learning, i.e., learning a single task from scratch, the cross-domain sample-to-label
regularier LFC is no longer applicable, since no auxiliary tasks are available. This makes our framework
incompatible with general supervised learning.

The source model also plays an essential role for supervision of mixed features. If the teacher is not trustworthy
enough, the effects of sample-to-feature mixup cannot be guaranteed. We design two groups of experiments to
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verify this. In the first group, we evaluate SMILE with degenerated teachers, including one without knowledge
preserving from the source model, and the other without adaptation to the target data. They are denoted
by "w/o Source" and "w/o Target" respectively. The second group simulates general supervised learning,
where only original mixup and sample-to-feature mixup are involved in SMILE. Specifically, results in Table 8
show that preserving the source weights contributes more than adapting to the target data, in terms of
sample-to-feature mixup. Experiments on the second group further backup the analysis. As shown in Table 9,
when training from scratch, SMILEis inferior to vanilla Mixup, indicating that the sample-to-feature component
has negative influence if using a low-quality teacher.

Table 8: Evaluation of fine-tuning on CUB-200-2011 C:25%/N:800.
Mixup SMILE SMILE w/o Target SMILE w/o Source
73.02 77.27 75.72 73.45

Table 9: Evaluation of training from scratch on CUB-200-2011 C:25%/N:800.
L2 Mixup SMILE

16.97 25.36 21.86

6 Conclusion

In this work, we figure out the difficulty of applying mixup to transfer learning, and introduce SMILE—Sample-
to-feature Mixup strategies for Efficient Transfer Learning. Beyond a direct combination of fine-tuning and
mixup, SMILE pursues generalizable linear behaviors through incorporating both features of the target domain
and the label space of the source domain. We conduct extensive experiments using a wide spectrum of target
datasets. Results show that SMILE can significantly promote the effectiveness of fine-tuning and outperform
various competitive fine-tuning algorithms. Ablation studies and empirical discussions further backup our
design intuition and purposes.
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A Detailed Results for Figure 1

Here we provide detailed results for Figure 2, with the mean accuracy and standard deviation among five
random trials for each experiment. We additionally report performance for 200 training samples for clearer
comparison. Results in Table 10 clearly show that, in transfer learning, Mixup performs worse (compared
against the baseline) as fewer training samples are available. However, when training from scratch, Mixup
consistently improves the performance with a large margin.
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Table 10: Accuracies with standard deviations corresponding to Figure 2. TL refers to transfer learning,
where we fine-tuning an ImageNet pre-trained checkpoint to adapt the new task. ST refers to standard
training, i.e. training from a random initialization.

Dataset Method Size of Training Set

200 400 600 800 1000

CUB(TL) Baseline 32.98±0.13 55.59±1.02 68.24±0.35 74.85±0.12 78.83±0.42
Mixup 27.25±0.18(-5.73) 52.39±0.68(-3.20) 65.72±0.58(-2.52) 73.02±0.11(-1.83) 77.44±0.14(-1.39)

Cars(TL) Baseline 38.13±0.60 61.17±0.36 76.22±0.44 82.73±0.59 87.01±0.07
Mixup 33.85±0.22(-4.28) 60.25±0.68(-0.92) 77.45±0.57(+1.23) 83.60±0.02(+0.87) 88.34±0.22(+1.33)

CUB(ST) Baseline - 9.57±0.49 16.45±0.21 19.06±0.62 26.11±3.24
Mixup - 16.07±1.20(+6.50) 24.87±0.80(+8.42) 32.49±1.22(+13.43) 35.53±0.96(+9.42)

Cars(ST) Baseline - 9.06±0.90 9.89±2.80 15.61±1.15 19.53±0.68
Mixup - 16.29±2.22(+7.23) 20.36±1.92(+10.47) 24.77±0.41(+9.16) 35.24±0.69(+15.71)

B Demonstrated Effects of Feature Interpolation

Here we present show cases for comparison in feature interpolation among different algorithms. To obtain the
interpolation points, we first randomly select a pair of images and then generate five mixed inputs with the
interpolation coefficients λ of [0.6, 0.7, 0.8, 0.9, 1] respectively. Forward computation is performed given these
mixed inputs and then, their corresponding deep features are extracted and projected to the 2-D space using
PCA. We plot the interval of λ > 0.5 for better demonstration of projection as the same sample dominates
the interpolated result when all λ lie in either (0, 0.5) or (0.5, 1). Results of four random pairs are illustrated
in Figure 4.
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Figure 4: Visualizations of feature interpolation behaviors for different fine-tuning methods. We extract the
representations from the last hidden layer which are 2048 dimensional feature vectors and then project them
into the 2-D space using PCA. Each column corresponds to the projected deep features generated by putting
forward the interpolation of a random pair of images. The number marked next to the point refers to the
interpolation coefficient λ.
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