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ABSTRACT

While having been used widely for large-scale recommendation and
online advertising, the Graph Neural Network (GNN) has demon-
strated its representation learning capacity to extract embeddings
of nodes and edges through passing, transforming, and aggregating
information over the graph. In this work, we propose PGLBox! - a
multi-GPU graph learning framework based on PaddlePaddle [24],
incorporating with optimized storage, computation, and communi-
cation strategies, to train deep GNNs based on web-scale graphs
for the recommendation. Specifically, PGLBox adopts a hierarchical
storage system with three layers to facilitate I/O, where graphs and
embeddings are stored in the HBMs and SSDs, respectively, with
MEMs as the cache. To fully utilize multi-GPUs and I/O bandwidth,
PGLBox proposes an asynchronous pipeline with three stages -
it first samples the subgraphs from the input graph, then pulls &
updates embeddings and trains GNNs on the subgraph with pa-
rameters updating queued at the end of the pipeline. Thanks to
the capacity of PGLBox in handling web-scale graphs, it becomes
feasible to unify the view of GNN-based recommendation tasks
for multiple advertising verticals and fuse all these graphs into a
unified yet huge one. We evaluate PGLBox using a bucket of re-
alistic GNN training tasks for the recommendation, and compare
the performance of PGLBox on top of a multi-GPU server (Tesla
A100x8) and the legacy training system based on a 40-node MPI
cluster at Baidu. The overall comparisons show that PGLBox could
save up to 55% monetary cost for training GNN models, and achieve
up to 14X training speedup with the same accuracy as the legacy
trainer. The open-source implementation of PGLBox is available at
https://github.com/PaddlePaddle/PGL/tree/main/apps/PGLBox.

“These authors contributed equally to this work.
IThis work was supported in part by National Key R&D Progam of China (No.
20217ZD0110303).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °23, August 6-10, 2023, Long Beach, CA, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08....$15.00
https://doi.org/10.1145/3580305.3599885

CCS CONCEPTS

» Mathematics of computing — Graph algorithms.

KEYWORDS
Graph learning; GNN; GPU graph engine; Hierarchical storage

ACM Reference Format:

Xuewu Jiao, Weibin Li, Xinxuan Wu, Wei Hu, Miao Li, Jiang Bian, Siming
Dai, Xinsheng Luo, Mingqing Hu, Zhengjie Huang, Danlei Feng, Junchao
Yang, Shikun Feng, Haoyi Xiong, Dianhai Yu, Shuanglong Li, Jingzhou
He, Yanjun Ma, and Lin Liu. 2023. PGLBox: Multi-GPU Graph Learning
Framework for Web-Scale Recommendation. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’23),
August 6-10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3580305.3599885

1 INTRODUCTION

In the last decades, machine learning techniques have been pushing
the frontiers of the development of internet services, such as Ads
click-through rate prediction[16] and content understanding|[5, 38].
Among the wide range of machine learning models, Deep Neural
Networks(DNNs) have been widely used to learn users’ preferences
from their historical Ad impressions and clicks [3, 36]. Particularly,
given the online Ad data, including users, items, and records of pur-
chases or clicks, recommender systems might model the data into
web-scale graphs with users/items as nodes and purchases/click-
throughs as edges [9, 37]. They further incorporate Graph Neural
Networks(GNNs) to capture structural information from the graph
and recommend items to users by predicting potential edges ac-
cordingly.

In general, given a graph with features attributed to every node,
the GNN treats the node or edge features as the input of the neu-
ral network while incorporating the graph structure as part of
neural layers. For every node/edge, the GNN aggregates its neigh-
bors’ information to form the embeddings (low-dimensional vec-
tors) of the node/edge. In this way, GNN is capable of performing
node/edge prediction tasks, such as node classification[18], graph
classification[1], and predicting missing links between nodes, aka
link prediction[39]. Along this line of research, algorithms have
been studied extensively to facilitate GNNs training at scale. For ex-
ample, DeepWallk [29] and Graph Convolutional Neural Networks
(GCNs) [4, 18] propose to mimic information propagation over
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graphs through random walks or convolution and extract features
accordingly. Graph Attention Networks (GATs)[32] extends GCNs
with self-attention mechanisms, while GraphSage[12] leverages
subgraph sampling in mini-batch stochastic training for efficacy.

Though ways to improve GNNs have been studied in previous
works, training GNNs over a large-scale graph with millions of
nodes and billions of edges is still a challenging task for web-scale
recommendation. There are several non-trivial technical issues that
should be addressed.

e While the graph is huge, the embeddings of its nodes and edges
are all ultra high-dimensional vectors, with millions of sparse and
dense features mixed, for the web-scale recommendation. Blessed
by the data locality of graph learning, it is possible to cache the
key data that is high-frequently used in the calculation. Further-
more, during the GNN training, the graph (or subgraphs) is im-
ported as a read-only constant while embeddings of nodes/edges
would be updated in an extremely fast manner. Thus, imbalances
between both read/write and graphs/embeddings widely exist. In
this way, there needs a way to store data, including graphs and
embeddings, in storage devices at different speeds, with respect
to the frequency of read and write.

To carry out large-scale graph learning, a traditional way is to
map the computation load over a cluster of high-performance
computing nodes [40] on top of the Message Passing Interface
(MPI) with shared disks. For every single node, it however suffers
significant time costs for data synchronization between CPU
and GPU. Researchers even proposed a CPU-only strategy that
outperforms a GPU-CPU solution [40] for large-scale training.
Thus, to fully utilize the computational power of GPU, there
needs a way to parallel CPU-GPU data communications and GPU
computations in an asynchronous work-stealing fashion [2].

To this end, we propose PGLBox, a large-scale graph learning
framework, based on multi-GPUs with hierarchical storage. As
shown in Figure 1, PGLBox loads the graph (nodes with features,
edges) from disks, and further stores the sparse representations of
the graph and embeddings in SSD and HBM (High-Bandwidth Mem-
ory) respectively. It leverages a three-stage asynchronous pipeline
to train GNNs, where CPU-GPU communications and GPU com-
putations occur in an asynchronous manner for work-stealing. In
addition to system design, a novel metapath split-based sampling
strategy has been integrated into PGLBox for efficient subgraph-
based learning. In summary, the main contributions of this work
are as follows.

e We study the problem of large-scale GNN training for web-scale
recommendation tasks, where billions of edges connecting mil-
lions of nodes are incorporated. To the best of our knowledge, this
study is the first work aiming to accelerate GNN-based recom-
mendation systems by addressing technical issues, including (1)
the data access imbalance between both the graph/embeddings
and read/write, (2) significant communication overhead caused
by GPU-CPU data synchronization for huge graphs, and (3)
subgraph-based efficient learning over huge graphs.

We propose PGLBox based on PaddlePaddle [24] deep learning
framework, that addresses the technical issues in a systematic
way. To accelerate storage and data access, PGLBox incorporates
SSD and HBM to store the sparse representations of graph data
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and embeddings respectively. To reduce the cost of synchronous,
asynchronous pipelining has been adopted in the training algo-
rithm design with three stages. Finally, a modified Fisher-Yates
subgraph sampling algorithm has been proposed to lower the
costs of every training iteration. Compared to GraphSage [12],
the proposed sampling method re-indices the execution order
of subgraphs during the training process, leverages a metapath
split strategy and the compressed features (variable-length slot
features) for further cost reduction.

Extensive experiments on the real-world data from Baidu’s online
Advertising systems and an open-sourced benchmark dataset are
conducted to evaluate PGLBox. The results show that PGLBox
outperforms the legacy MPI cluster in terms of efficiency, where
it could save up to 55% monetary cost for training GNN models
(with equivalent effectiveness in recommendation) and achieve
up to 14X training speedup with the same accuracy as the legacy
trainer. We also establish the ablation studies to demonstrate the
effectiveness of each design and optimization in PGLBox system.

2 FRAMEWORK DESIGN

We present the overview of PGLBox and introduce its main com-
ponents from macro perspectives. The architecture of PGLBoxis
shown in Figure 1, it contains three parts, which are the CPU mod-
ule, Sparse table module, and GPU module.

e The CPU module - is responsible for coordinating the entire
training process. It initializes the graph parameters and loads
the nodes and edges from the file system into memory. It then
uploads this data to the GPUs and creates mini-batches for par-
allel processing. After each mini-batch is calculated, the CPU
module computes the node and feature embeddings and stores
them in the Sparse Table module so they can be referenced later.
The CPU also periodically saves the current training parameters
as checkpoints to the file system for warm-start GNN training.
The Sparse Table - is a key-value storage system that stores
the discrete nodes and features on solid-state drives (SSDs). It
also has a key hash index feature-to-file mapping to easily look
up keys. To reduce the latency of SSD access, we have designed
an explicit in-memory cache strategy, which can act as a buffer
to avoid excessive writing to the SSDs.

The GPU Module - has the responsibility of receiving the graph
data and constructing the GPU-type graph structure with a node
list and neighbor list for each GPU. The sampling and walking
are based on this graph data. The sparse embeddings from the
CPU module are also received by the GPU module and stored
in High-Bandwidth Memory (HBM). Then these embeddings
are fed into the GNNs training. Different CUDA streams are
created for the sampling and GNNss training. At the end of each
mini-batch, all of the GPUs in the PGLBox perform collective
communications to synchronize parameters using the NVLink
high-speed interconnections.

2.1 Hierarchical Storage

PGLBox stores graph structures, nodes, and sparse embeddings
hierarchically to support large-scale graphs of up to 10 billion nodes
and tens of billions of edges. Graph structure data contains the
link relationships of edges and slot features of the nodes. Sparse
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Figure 1: The architecture of PGLBox.

embedding contains node embedding and slot feature embedding.
We use four tables to store the graph data and sparse embeddings,
including nodeid2neighbor, nodeid2feature, node embedding, and
feature embedding. Nodeid2neighbor describes the link relationship
of edges, nodeid2feature represents the slot features of nodes, and
node embedding and feature embedding describe the nodeID and
slot feature embeddings respectively.
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Figure 2: Hierarchical storage.

To make the most efficient use of resources, the storage is divided
into High Bandwidth Memory (HBM), Solid State Drives (SSD), and
Memory (MEM). As shown in Figure 2, nodeid2neighbor is chosen
to be fully stored in HBM to reduce communication overhead be-
tween the CPU and GPU. The other three tables are stored in SSD
and Memory to accommodate larger-scale graphs. Both node-id
embeddings and slot feature embeddings are stored in SSD. Memory
acts as a link between the HBM and SSD, caching several passes
of sparse embeddings, nodelDs, and slot features of nodes. Addi-
tionally, we introduce the concept of a “pass” in the Graph Neural
Network (GNN) training process. The sampling starting points are
divided into multiple passes, with a specific number of sampling
starting points forming a pass.

HBM is expensive and has limited capacity, so one-pass embed-
ding and generated training instructions are stored in HBM, while
embeddings are updated with mini-batches in GNN training. When
a pass of nodes has been sampled in GPU, multiple walks are gen-
erated starting from these nodes and traverse the walks to form
training instructions. As the number of training instructions grows,
feed forward and back propagation computations are conducted for
the GNNs, and the embeddings in the GPU hash table are updated
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by the backward gradient. Additionally, the embeddings cached
in the CPU are updated when a pass is finished in the GPU. Full
embeddings stored in SSDs are updated when several passes of
training have finished, which can act as a buffer to avoid frequent
writing to SSDs. When the next pass begins, embeddings can be
used directly if Memory has cached all the nodes, otherwise, they
need to be looked up in SSDs.

Finally, embeddings in SSD, Memory and HBM are pulled and
updated based on different periods. The slot feature of nodes is
stored with only HBM and memory and is loaded into Memory
after loading node files from HDFS. All slot features of current
pass nodes are duplicated before the training process begins, and
embeddings of nodelD and slot features are obtained together from
Memory or SSD. These duplicated embeddings of nodeID and node
slot features are then fed to GPU for GNN training. This hierarchical
storage makes full use of resources, improving resource utilization,
and making it possible for large-scale graphs of up to ten billion
nodes and tens of billions of edges to be trained on a single node
machine.

2.2 Three-Stage Asynchronous Training
Pipeline

The training workflow consists of three time-consuming tasks: sam-
pling neighbors to generate training instances, pulling & updating
embeddings from sparse tables, and training with GNNs. These
processes require overlapping hardware resources such as GPUs
and SSDs. However, the limited GPU resources can greatly affect
the training efficiency if they are not used properly. To address this
problem, we have developed a three-stage pipeline that includes
a worker thread (for the work-stealing) that takes tasks from the
prefetch queue and makes use of the corresponding resources in
each stage asynchronously. The processed results are then pushed
into the next stage. In addition, we use atomic semaphores [19] to
control the number of prefetch queues.

Figure 3 shows the pipeline process. In the sampling stage, we
have already built graph data with GPU type, and sampled neigh-
bors from a given number of start nodes to form a walk with a
preset walk length. This stage can operate depending on the preset
atomic semaphore, and once the number of loads exceeds 0, the
sample is executed immediately. The Pull&Update Embedding stage
consists of two procedures, which are 1) retrieving the referenced
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parameters in the samples from MEM and SSDs, and 2) updating
gradient information (from the training results) to build the model.
Thus, the training stage heavily relies on the Pull Embedding stage,
as the forward and backward propagation of the GNNs can only
be computed after all the embeddings are loaded. Note that we
combine the Pull and Update stages in Figure 3 since the Update
stage (the parameters of several past passes have been cached in
MEM) consumes a significantly shorter time than the Pull stage
(the cache rebuilding is required) so that the Update stage with its
dependency on the training results could be neglected and hidden
in the whole pipeline.

Pull
Pass 1 ‘ Sample b lé;zUlp;datc Train GNNs ‘
Pull&Update N
P: 2
One Epoch ass ‘ Sample Emb Train GNNs
Pass 3 Sample | FUNEURdEE | 1 i GNNs
Emb

Pass N ‘ Sample Train GNNs

Pull&Update
Emb

Time

Figure 3: The three-stage pipeline covering sampling,
pulling&updating embedding, and training GNNs.

The asynchronous pattern is designed for the purpose that en-
abling work stealing. Each pass occupies different system resources
during various stages, and executing different passes at different
time points can maximize heterogeneous resource utilization. Si-
multaneously, the subsequent pass can pre-execute some stages
while the previous pass is being executed. For instance, the second
pass can pre-execute sampling while the first pass is pulling pa-
rameters, thus reducing the overall task execution time. It is the
same as the classic work stealing style, where each processor in a
computer system has a queue of work items to perform.

Although sampling and GNN training are all operated in GPUs,
PGLBox with multiple high-end GPUs has a comparable computa-
tion power to a distributed cluster with dozens of CPU-only nodes.
Sampling purely in GPUs is more complicated and thus requires
optimization to ensure that the latency of the samples can be over-
lapped by the pipeline. In the following subsections, we introduce
the detailed sampling strategy and the optimization designs.

2.3 Sampling on Multiple GPUs

Sampling Operation. Sampling a subgraph for a set of target
nodes and training multi mini-batches in one pass makes the train-
ing of GNNs in large-scale graphs possible, as mentioned in Section
1. This process is mainly divided into four steps, as shown in Figure
4: from the input of the entire graph to the generation of subgraphs
of target nodes. The first step is to input the entire graph, the second
step is to randomly walk through the graph according to the pre-
configured metapath to obtain different paths, the third step is to
perform multi-stage sampling on the deduplicated nodes to gener-
ate the subgraphs, and the fourth step is to generate pairs according
to the walk and deduplicate the nodes in the pairs. Here multi- stage
is closed to multi-hop neighborhood-based sampling [27], which
refers to the number of sampling stages. When performing 2-stage
sampling, we first sample the immediate neighbors connected to
the central node, and then, use these immediate neighbors as start-
ing points to further sample the second-order neighbors that are
directly connected to the first-order neighbors. The second and
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third steps both involve the sampling of one or more nodes from
the candidate neighbors, and two algorithms are used: reservoir
sampling[33] and modified Fisher-Yates sampling[7]. The reservoir
sampling ensures the neighbor nodes are chosen with equal proba-
bilities when the resource occupation is determined, so it is used
to generate random walks. However, it takes a long time to gener-
ate the subgraphs due to high complexity. Therefore, the modified
Fisher-Yates algorithm is proposed to improve the efficiency in the
subgraph generation step.
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Figure 4: The procedure to generate sub-graphs.

Assuming that the neighbor count of the node is N, the maximum
sample count of the node is K, and the final sampled result is stored
in res[K], and the data stores the real node ID of the neighbors.
The main steps for the random walk are shown in Algorithm 1.
Multiple start nodes can select the next node in parallel according
to the reservoir algorithm, and the selected nodes will be used as
the next sampling starting nodes. The walk paths are generated
after the sampling operation executed walk_len steps. Pairs in the
walks are generated according to the skip-gram method [11], and
the duplicated nodes are used as the target nodes to generate the

subgraphs.

Algorithm 1 Random Walk Based Sampling

Input: maximum sample count K, neighbor count N for each target node.
Output: sampled result array res[K]
1: if N < K then
2 foreachi € [0,N—-1] do
3 res[i] =datali]
4 end for
5: else
6: foreachi e [0,K—1]do
7
8
9.

res[i] =i
end for
for each j € [K,N] do

10: num =random (0,j)

11: if num < K then

12: res[num] =j

13: end if

14:  end for

15:  foreach j € [0,K — 1] do
16: res[j] =data[res[j]]

17:  end for

18: end if

For the modified Fisher-Yates algorithm used for the subgraph
sampling, the main steps are shown in Algorithm 2. The assump-
tions of neighbor count and maximum sample num are the same
as Algorithm 1. Note that the attached pseudo-code describes the
sampling process in a single step, while the whole sampling will not
be terminated without achieving the step threshold walk_len. The
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modified Fisher-Yates algorithm limits the shuffling range within K
according to the different sizes of N and walk_len, which is different
from the global shuffling operation in the original Fisher-Yates[7].
The modified algorithm can reduce the computational complexity
and improve the sampling speed. The promising performance will
be verified in the experimental section.

Algorithm 2 Modified Fisher-Yates Sampling

Input: maximum sample count K, neighbor count N for each target node.
Output: sampled result array res[K].
1: if N <K then

2 for eachi € [0,N —1] do

3 res[i] = datali]

4 end for

5: else

6: if N < 2K then

7 begin =0

8 split =K

9 else

10: begin=N-K

11: split=N-K

12:  endif

13:  for idx € [split, N - 1] do

14: num = random(0, idx)

15: swap(data[num], dataidx]))
16:  end for

17:  for idx €[0,K-1] do

18: res[idx] = data[begin + idx]
19:  end for

20: end if

Reindex Operation. The sequence of the target nodes and the
sampled neighbor nodes can be obtained after sampling the dedu-
plicated nodes. On top of the nodes sampled, a reindex operation is
proposed to sort all the nodes in ascending order, to obtain the edges
connected according to the renumbering, and the new sequence of
nodes starting from the source node, the first-order neighbor, the
second-order neighbor, etc. As shown in Figure 5, we assume the
IDs of the target node are {13,14,16,18}, and the first-order neighbors
are {14,13..68, 16}. After the first step of sampling, the reindexed
target nodes and first-order neighbors are listed in the third table.
The same operation iterates until sorted in order. It is obvious that
the source node and neighbor nodes of each order are sorted from
top to bottom as shown in the last column.

The motivation for reindexing is mainly to reduce intermediate
redundant calculations actually. The model trains from high-order
neighbors to low-order neighbors on the sampled subgraphs. As
shown in Figure 6, {20,13,19,50} are unnecessary to be updated
after the first layer training, because the updated gradient at this
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Figure 6: Dynamic interception during the model training,.

time is calculated and aggregated without these nodes. Similarly,
only target nodes are required to be updated in the second layer
training. Thus, the redundant calculations in the middle layer can
be intercepted to reduce storage space, which relies on the reindex
operation as the prerequisite. The dynamic interception not only
reduces memory usage but also boosts the calculation speed of the
model training.

2.4 Other Key Optimizations

Variable-Length Slot Features. Compared to the ID of the graph
node, the slot features on the node also play an important role in
graph model training. In the current web-scale graph, the node
usually contains text features and semantics, which are full of user
behavior information and could contribute to business growth.
However, the text features assigned to specific nodes’ slots are
extracted from the varying size of the original text data, which could
cause a lot of redundant storage usage for traditional feature slots
setup, especially for hyper-scale graphs. The traditional way is to
use a fixed-length size to preset all the feature slots for convenience,
where the size is required to cover the maximum length of the
mixed features. It is obvious that such an all-in-one method could
consume a fixed large amount of space in HBM to damage the
capacity to load larger graphs. Therefore, we are motivated to
design the variable-length feature slot, which stores in HBM in a
filled-as-needed manner when pushing/pulling the corresponding
embeddings, to increase the size of the trainable graphs in turn.
To enable the variable-length feature slot, the CPU in PGLBox
is in charge of parsing the features and recording the length of
features corresponding to various slots of the node (if the node
contains the slot feature). All node IDs can be obtained when a pass
has finished sampling. Then, the feature tables of the nodes in the
CPU will be queried according to the node IDs, and the queried
result is transferred to the GPU. The querying and filling process
of variable-length slot features is shown in Figure 7. Specifically,
the slot ID lists and feature lists of nodes in GPU are constructed
at first. A hash table with nodelD as key and feature size/offset
as value is also built into GPU, where feature size indicates the
number of features according to the slot, and feature offset denotes
the storage offset of the feature. When the allocation of the slot
feature and embedding is initiated in the GPU, the hash table is
queried to obtain the size and offset information according to the
node ID. As drawn in the HBM block (Figure 7), the slot feature of
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all nodes can be retrieved by the feature size, the feature offset, and
the pre-built feature list, where the offset of different slots can be
further retrieved by the slot list. Finally, all the features in this pass
are deduplicated for further embedding pulling, and filling in the
slot loading tensor.

> (feature size, feature offset)
13 Hash - (1, 0x70000) 13
6 Toble 0x10000) .
Query AN e s

18 > (5, 0x55000)

Slot List [13 [ 16 [ 20
Feature List mmﬂ

HBM
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18 [50 [ 80 [ 65 [ 90 [101

Slot Loading Tensor

Node List
Figure 7: Query and fill of variable-length slot features.

Parsing and recording the lengths of different slot features in
advance, allocating feature space and feature embedding space on
demand, storing features, and corresponding embeddings in hierar-
chical levels are all beneficial to the support of higher-dimensional
feature embedding and a larger number of features (i.e., larger
graphs).

Metapath Split. To quickly sample edges on multi-GPUs, we store
all the link relationships of edges in HBM, where nodes in the
graph are set as the target nodes to be sampled according to the
previously defined metapath. Typically, metapath is for sampling
different walks composed of varying types of edges on demand.
However, with the growth of the graph scale, the expanded edges
cannot be fully stored in limited GPU HBM. To mitigate this issue,
we propose the metapath split optimization, assigning the hetero-
geneous graphs with their loads into metapath-level subgraphs,
where the resource limitation of a single machine could be broken
through and the trainable scale of graphs could be further enlarged.
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the sub graph with metapath1
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Figure 8: Metapath split optimization.

The key operation of metapath split is to split the processing
of the entire graph into 1) the loading, 2) the sampling, and 3) the
training of subgraphs at metapath level. As shown in Figure 8, only
the edges and nodes assigned to the corresponding metapath are
loaded in the CPU and GPU. The splitting operation first divides
all metapaths with the same starting nodes into a specific class
and set indexes to metapaths within the same class. Then, the set
of starting nodes for sampling can be calculated according to the
total length of the metapaths and the index of the current metap-
ath, while the duplicated nodes are collected simultaneously for
pulling embeddings. Once the trainable embeddings are ready, GNN
training is initiated and organized in batches. With the metapath
split, the peak storage space for edges in HBM decreases since only
metapath-related edges are in charge of once splitting. The capacity
of loaded edges could be doubled in real applications (introduced
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in the experimental section). The performance gains are visible
but not that significant compared to DeepWalk under the Graph-
SAGE mode, which is necessary to upload all relevant edge types
for the specified metapath starting points in the GPU memory, so
the memory savings and graph scalability of the GraphSAGE model
are significantly lower compared to DeepWalk.

Although the metapath split can drastically enlarge the scale of
the graph loaded, the training of metapath-level subgraphs could
affect the performance of the prediction accuracy (i.e., recall in
our settings). The original starting nodes use width-first traversal
to choose different metapaths cyclically, while the same starting
nodes are evenly divided and each metapath is traversed in a depth-
first manner. This could change the update order for embeddings
compared to the original way so that the final recall is possibly
influenced. To address the disorder, we sort different metapaths
according to the number of starting nodes and edges. Specifically,
metapaths are sorted in ascending order based on the class occur-
rence of their starting nodes, and then for the matapaths with the
same class of starting node, the sorting will follow ascending order
based on the number of edges in the metapath. We also evaluate
the sorted metapath adjustment in the experimental section to
demonstrate its usefulness.

2.5 Multi-Node Support

To further increase the capacity to load larger graphs, PGLBox sup-
ports distributed storage of node embeddings on multiple machines.
Splitting node embeddings based on nodeID to different machines
could take advantage of the remaining capacity of GPU resources.
Specifically, embeddings can be prefetched from SSD into the mem-
ory of this pass, while different nodes communicate via nodesIDs
exchanged in the form of RPC communication [26], which is used
to build the HBM table for subsequent training. Then, the system
leverages NCCL’s all2all [28] strategy to query node embedding
and communicate gradient data in the training process. Ahead of
the multi-machine update, it is necessary to merge the gradients
between multiple GPUs to ensure the consistency of the gradients.

3 DEPLOYMENT AND EVALUATION

In this section, we showcase the detailed deployments of our pro-
posed PGLBox in a real-world industrial case and conduct com-
prehensive experiments to evaluate the performance of the overall
system as well as the effect of each optimization strategy. Specifi-
cally, we are eager to answer the following questions based on the
experimental results:

e How does PGLBox system perform compared with the MPI clus-
ter in terms of efficiency and effectiveness?

e Does the three-stage pipeline in PGLBox achieve the effect of
"work stealing" in multithreaded computation?

o What are the effects of the proposed optimization strategies on
runtime and resource usage?

Setups. As shown in Table 1, we listed the detailed configurations
for deploying PGLBox and MPI cluster in a real-world industrial
case, where these two systems are launched to predict the neighbor
information (user — ads click pairs) from a given graph built upon
the data collected from Baidu’s search engine. Based on the basic
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deployment, we conduct several experiments to measure the effi-
ciency and effectiveness of deployed systems as well as the ablation
test for each optimization strategy in PGLBox. Note that, the CPU
in both systems keeps the same type for all the experiments.

Table 1: Overview of the system deployment.

System MPI Cluster PGLBox
Intel(R) Xeon(R) Gold 6271C
Processor CPU@2.60GHz (x40) Tesla A100 (x8)
Memory 100T 320G
Storage 24T 24T
+High-speed Ethernet switch *NVMe SSD.S RAID 0
Remarks +Single data center +NVLink
& +1.5T MEM CPU

Datasets. Two datasets are adopted in the experiments, which are
(1) a large-scale dataset (denoted as AdLogs) created from Baidu’s
recommender system, and (2) an open graph benchmark dataset
MAG240M [13]. To construct AdLogs, we collect the historical Ad
logs for the past 180 days from Baidu’s search engine, including the
information (7 in total) about user ID (uid), clicks (clk), conversion
(conv), Ad entity (entt), Video completion rate (eplay), click-through
of e-commerce apps (eclk), and other related browsing records (rid).
Then, we define 9 categories for the edges based on the collected
Ad logs, which are uid2clk, uid2conv, conv2entt, clk2entt, uidenclkz,
uid2pnconv, uid2eplay, uid2eclk, and uid2rid. The final graph dataset
consists of 1 billion nodes and 20 billion edges, where each node
carries on 8 slot features, such as age, sex, etc. to enhance the node
representations. The dataset split for training and testing (validation
is skipped assuming the graph model’s hyper-parameters are fitted
already) follows a 180:1 ratio, where the past 180 days’ logs are
used to train the graph model, and the next day’s logs are used
for testing. For the second dataset, MAG240M is a heterogeneous
academic graph extracted from the Microsoft Academic Graph
(MAG) [34], typically used to predict the primary subject areas of
the given arXiv papers. MAG240M dataset owns about 0.24 billion
nodes and 1.7 billion edges respectively. We follow the default data
splitting strategy in [13].

Graph Models. We adopt three popular graph representation learn-
ing models, i.e., DeepWalk, GraphSage, and UniMP [30] to evaluate
PGLBox. Specifically, DeepWalk and GraphSage are commonly used
in the actual business lines (applications) from Baidu, where we
apply these two graph models in the real case with AdLogs dataset.
For UniMP, we follow the original evaluation settings in [13] which
uses the benchmark dataset MAG240M, DeepWalk is used to gen-
erate embeddings on the MAG240 dataset for the UniMP model.
DeepWalk and GraphSage were originally proposed for homoge-
neous graph learning. while they have been also developed into
heterogeneous graph learning [17, 21, 31]. Our current framework
supports both homogeneous and heterogeneous graphs, and the
baseline models can accommodate both types of graphs depending
on the input data. When the input data is a heterogeneous graph,
the model will automatically extend to a heterogeneous model.

Metrics. To evaluate the performance of the proposed PGLBox, we
consider two perspectives, which are effectiveness and efficiency.

2 pnclk and pnconv indicate the clicks and conversion brought by the Baidu’s Phoenix
PPC platform [8], which is different from the regular native Ads system.
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For the effectiveness, we obtain the recall of Ads based on the well-
trained GNN, where the value could be calculated by comparing the

predicted Ad preferences with the real Ad clicks from users, defined
num_of clicked_Ads

num_of predicted_Ads

system-wise cost including the training time, the memory usage,

the training capacity (the size of the subgraphs loaded), and the
utilization of computing units (i.e., CPU and GPU). Note that, the
above efficiency indicators are observed when the baselines achieve
the same training effect. Since the main comparison is between
PGLBox and the MPI cluster, we also report the ratio of improve-
ment or degradation (relative recall) based on the performance of
the legacy trainer.

as recall = . For efficiency, we measure the

3.1 Case Study

In this subsection, we study a real case coming from Baidu’s recom-
mendation service, where we train a GNN model using the AdLogs
dataset to predict the Ad clicks (edges) given users’ information
(nodes). For a fair comparison, the legacy MPI cluster and PGLBox
use the same training and testing datasets in an A/B test manner.
To compare the effectiveness and efficiency of these two systems,
we report the training time, the speedup ratio, and the recall of Ads
generated by DeepWalk and GraphSage.

Figure 9(a) shows the total training speedup ratio of PGLBox
compared to the MPI cluster with DeepWalk. The comparison in-
volves 6 epochs and over one million passes. The training time
of a single epoch with the MPI cluster is a multiple of 13.66 with
PGLBox. It is reasonable that the two most time-consuming stages
- sampling and training are both implemented on GPU in PGLBox,
which is faster than processing on CPU in the MPI cluster, with the
help of GPU’s powerful parallel computing. We can also observe
that relative training time grows when the epoch number increases,
it can achieve 14.04 maximally in the fifth epoch. It is mainly due to
the failure of inter-node communication and the retry of processing
failures increases rapidly when need training multiple epochs in
the MPI cluster. While the training time of each epoch of PGLBox is
basically the same for the relatively stable process success rate. This
also results in the stability of PGLBox being higher than the MPI
cluster. Moreover, the hardware and maintenance cost of PGLBoxis
less than 55% of the MPI cluster’s cost.

To evaluate the effectiveness, we use the recall of Ads to measure
the quality of the node embedding. Figure 9(b) shows the recall
relative to the MPI cluster of trained embedding by DeepWalk. We
train the input graph data with multiple epochs to obtain the node
embedding and calculate the similarity to get the top 50 Ads (pre-
dicted), then we use these top 50 Ads and the real clicked Ads in the
past 3 days to calculate the recall. Since the recall is highly related to
the revenue of recommendation, we have to guarantee acceptable
recall generated by PGLBox. The results show that PGLBox has an
even higher recall than the MPI cluster. Moreover, the relative recall
decreases as the number of epochs increases, which indicates that
the best model parameters can be obtained by both PGLBox and
the MPI cluster, while PGLBox consumes a shorter period of time.
Similar results could be observed from GraphSage. As shown in Fig-
ure 9(c)(d), the comparison of recall shows consistent trends with
the DeepWalk, while the speedup ratio is around 14 on average.
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Summary. The improvement in training speed (Figure 9) primarily
stems from the distributed GPU graph engine, which includes three
main aspects: 1) Full GPU implementation of graph storage, random
walks, sampling, and training, eliminating the inefficiencies of CPU
processing and extensive data interaction between the CPU and
GPU. 2) Employing a multi-GPU distributed architecture to parti-
tion the graph, attributes, and model, enabling parallel acceleration
and scalability. 3) Addressing the issues of non-fully connected
NVLink and network card topologies by implementing intelligent
relay communication. The enhancement in convergence speed is
mainly due to the more frequent parameter synchronization com-
pared to single-node GPU and distributed MPI. This results in more
updated parameters being pulled by nodes during training.

3 4 5 6 1 2

Number of Epochs Number of Epochs

(a) DeepWalk - Relative Training Time (b) DeepWalk - Relative Recall

120

115

110
1.05

1.00

2 1 2

3 4 3 4
Number of Epochs Number of Epochs

(c) GraphSage - Relative Training Time (d) GraphSage - Relative Recall

Figure 9: Performance improvements on top of the legacy
trainer (the MPI cluster).

In general, in such a real case with web-scale graphs, we could
conclude that the overall performance of PGLBox surpasses the
traditional MPI cluster in significant gaps. Other than this real case,
we also evaluate PGLBox on an open-sourced benchmark dataset
MAG240M to showcase its efficiency on general graph training, the
results in Table 2 depict that PGLBox still outperforms the legacy
MPI cluster with around 10 times training speedups.

graph model MPI PGLBox | speedup
DeepWalk | 147 min | 16 min 9.19
GraphSage | 192 min | 19 min 10.11

Table 2: Training speedup in one epoch on MAG240M (with the

same training loss).

3.2 Abalation Test

In this subsection, we investigate the effects of the proposed frame-
work designs and optimization strategies: three-stage pipeline,
variable-length slot feature, and metapath split.

Three-Stage Pipeline. We first evaluate the proposed three-stage
pipeline, where the relative execution time of sampling, pulling &
updating embedding, and training GNNs are shown in Table 3. The
total execution time of training one epoch corresponds to 100%. The
stage Training GNN takes 79% time of an epoch, which dominates
the entire pipeline runtime. Note that 14% of the remaining 21% is
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Stage Avg time | STD DEV
Sample 65.38% 15.70%
Pull Emb 5.31% 15.39%
Train 79.53% 5.35%
Save Model | 14.18% 9.2%

Table 3: Relative training time of each stage in the pipeline, 100%
is the average time of training one epoch.

slot num 5 50 100 125
gpu_mem (F) | 17.31 28.9 36.6 38.5
gpu_mem (V) | 17.06 16.8 17.07 17.5

mem_save 1.38% | 41.86% | 53.36% | 54.54%
train_time (F) | 199 241 254 269
train_time (V) | 192 197 203 199

time_save 3.52% | 18.25% | 20.08% | 26.02%

Table 4: GPU memory usage and training time of variable-length
design compared with fixed-length design.

model saving time, and the rest 7% time is the communication and
processing overhead. The latency of stage sampling and pulling &
updating embedding are hidden in the pipeline, which demonstrates
the effectiveness of asynchronous work stealing.
Variable-length Slot Features. We further evaluate the design
of variable-length slot features. Table 4 shows the GPU memory
usage and training time with different numbers of slot features in
the DeepWalk training, where we use (F) to represent fixed-length
storage, and (V) to represent variable-length slot feature. It can be
observed that GPU memory usage and execution time are reduced
significantly from fixed-length design to variable-length design,
while the gap is enlarging with the increase of slot feature numbers.
It is common sense that more GPU memory is occupied when the
slot feature size increases. The legacy fixed-length design allocates
storage according to the maximum space, while the variable-length
design only allocates the needed GPU memory, which helps re-
duce the redundancy occupation. Moreover, there are a lot of 0
keys in fixed length allocation to occupy storage, and these 0 keys
also participate in pulling parameters and pushing gradients in
GNN training, which results in training time growing rapidly. The
variable-length slot features could mitigate this issue as a bonus.
Metapath Split. We finally evaluate the design of metapath split,
by running a graph learning task to compare the memory usage and
the graph scale with and without the optimization. Table 5 shows
the GPU memory usage and graph scale in nodes with slot features
and nodes without slot features. We can observe that the released
GPU memory (memory saving) is significant no matter whether
the node has a slot feature or not when applying the metapath split
strategy. Furthermore, the edge capacity of the graph can reach
twice the original size benefiting from the metapath splitting in the
0 slot setting, while it provides 3.8 times expansion for the node
in the 8 slot setting. Thus, splitting graphs into sub-graphs in the
way of metapath could save a lot of memory, which can increase
the capacity for larger graphs in turn.

slot num 0 slot 8 slots
gpu_mem (W/0) 38.4 40
gpu_mem (w/) 22 26
mem_save 42.7% 33.25%

node_scale (w/o) | 1 billion 1 billion
node_scale (w/) | 1billion | 3.8 billion
edge_scale (w/o) | 20 billion | 20 billion
edge_scale (w/) | 40 billion | 20 billion

Table 5: GPU memory usage and graph capacity w/ Metapath Split

and w/o Metapath Split.
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3.3 Effect of Miscellaneous Designs

The effects of two additional designs are reported, which are bene-
ficial to PGLBox in terms of efficiency and effectiveness.
High-speed Interconnections via NVlink. We compare the train-
ing time of PGLBox w/ and w/o high-speed interconnections (HIN)
with DeepWalk and GraphSage. Specifically, we alter the number of
slot features to observe the time difference on one epoch training.
As shown in Table 6, the speedup ratio is significant with HIN. Note
that, the speedup ratio for the setting of 8 slot features is relatively
smaller than the 0 slot feature due to the frequent communication
with the CPU for the retrieval and query of features.

slot num ‘ 0 slot ‘ 8 slots
DeepWalk

w/HIN | 156 min | 237 min

w/oHIN | 49 min | 104 min

speedup 3.18 2.28
GraphSage

w/HIN | 168 min | 209 min

w/o HIN | 64 min | 104 min

speedup 2.63 2.01

Table 6: Effect of HIN.

Sorted Metapath. We compare the recall of Ads for PGLBox before
and after applying the sorted metapath strategy with DeepWalk.
Specifically, the differences in recalls are recorded from the first
epoch to the sixth epoch. As shown in Figure 10(a), the performance
gain is significant after applying the sorted metapath strategy.
Sampling Optimization. As aforementioned in Section 2.3, we
proposed a modified Fisher-Yates algorithm to further boost the
speed of sampling in GraphSage model. Specifically, we compare
the modified Fisher-Yates algorithm with the baseline reservoir
sampling algorithm in terms of training time consumption on the
AdLogs dataset. The result in Figure 10(b) demonstrates that the
proposed algorithm can save considerable time during the sampling
process in each training epoch.

—— unsorted
— sorted

Number of Epochs

(a) Sorted Metapath (b) Sampling Strategy in GraphSage

Figure 10: Training speedup from the sorted metapath and
modified Fisher-Yates sampling.

3.4 Summary and Discussion

Based on the above results, we can answer the questions driving
the experimental evaluation with clear evidence. For both Graph-
Sage and DeepWalk graph models, PGLBox reduced the training
time of a 40-node MPI cluster by at least tenfold, and cost less than
55%. Additionally, node embedding trained by PGLBox yielded a
better recall than the distributed parameter server in the cluster
solution with multiple epochs. It is likely because of the more fre-
quent parameter synchronizations in the single-node architecture
of PGLBox. The graph neural network training dominates the execu-
tion time, meaning the latency of sampling and pulling embedding
are largely hidden (work stealing). Furthermore, the variable length

4270

KDD ’23, August 6-10, 2023, Long Beach, CA, USA.

slot features can reduce GPU memory usage and training time
when the slot feature number is high. Lastly, splitting the graph in
metapath way reduces the redundant edges loaded to GPU memory,
increasing the scale of graph data.

4 RELATED WORK

Due to the rising interest in GNNs, frameworks designed specifi-
cally for expressing and accelerating GNNs are developed. Euler[41]
and PGL[22] focus on sampling-based mini-batch training on the
large graph but lacks GPU support. ROC[15] is a distributed multi-
GPU framework for GNN training on full-graphs without using
sampling techniques, so it is not eligible for graph inductive rep-
resentation learning, and graph size is also limited. NextDoor[14]
was designed to perform graph sampling on a single GPU. PyTorch-
Geometric[10] is an extension for geometric deep learning to the
PyTorch framework. PyG’s programming model is centered around
sparse tensor abstraction. During message passing, it first gathers
node features to edges, applies a user-defined message function and
then scatters them to the target node for aggregation. These scatter-
gather patterns are inefficient due to generating large intermediate
message tensors. DGL[35] is also a popular GNN framework using
a message-passing interface but fails to make the most of GPU re-
sources due to low GPU utilization. NeuGraph[23] accelerates GNN
training by partitioning graphs to multiple GPUs, while intermedi-
ate GNN data is stored in the host CPU, and training performance
is limited by the communication between CPU and GPU. A specific
GPU-oriented data communication architecture is provided in[25]
for multi-GPU GNN training. While PGLBox is a huge and deep
graph learning framework, based on multi-GPUs with hierarchical
storage. It fits well for inductive representation learning on graphs
for combining graph operations and neural network training.

There are several existing graph learning frameworks, such as
GraphVite, PyTorch-BigGraph[20], and Graph4Rec[22]. GraphVite
only performs walk-based models on a single machine with multi-
GPUs. Although PBG supports distributed training, it cannot deal
with heterogeneous GNN models, lacking the capability of modeling
complex structural data for recommender systems. Graph4Rec store
graph structures and features on CPU and also training network on
CPU in MPI cluster, high cluster cost, and low throughput bound
the wide board usage.

5 CONCLUSION

GNNss are popular in recent years due to their capability to learn
information from graph-structured data. Since the size of graphs
is growing rapidly, the demand for processing large-scale graph
datasets is urgent. In this work, we propose a novel efficient GNN
training framework-PGLBox, based on a multi-GPU system with
hierarchical storage consisting of SSD, MEM, and HBM. A pure
GPU-based graph processing engine is built for sampling, walking,
and training, releasing the burden caused by the communication
between CPU and GPU. Three stage pipeline is designed to overlap
the execution of sampling, pulling & updating sparse tables, and
training. Moreover, multiple optimization operations are proposed
to further improve the overall performance. The comprehensive
experiments show that PGLBox outperforms the legacy MPI cluster
in terms of efficiency and effectiveness and is fitting well with the
web-scale graph data in the industrial recommender systems.
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A SUMMARY OF TERMINOLOGIES

We summarize the full definition of the domain-specific terminology
in this section with references.

o Slot: the slot is equal to a feature slot, used to represent a broad
feature category, such as user ID, gender, age, etc..

Metapath: Metapath [6] is a path connecting a series of edge
types in a heterogeneous graph network. We define multiple
paths during sampling to mine various structural relationships in
the heterogeneous graph. For example, we can connect different
user IDs through the "userid2clk-clk2userid” path to explore the
potential relationships between users.

Pass: the sampling starting points are divided into multiple
passes, with a specific number of sampling starting points form-
ing one pass. After sampling, pairs are formed based on the sam-
pling results to obtain training instances. The sampling results
of one pass are split into multiple mini-batches. Thus, sampling
is performed at the pass level, while GNN training is at the mini-
batch level. The primary purpose of this approach is to construct
hierarchical storage, prefetch pass-level embedding, and enable
full GPU training.

Work Stealing: Work Stealing is a scheduling strategy for multi-
threaded computer programs. It solves the problem of executing
a dynamically multithreaded computation, one that can "spawn"
new threads of execution, on a statically multithreaded computer,
with a fixed number of processors.

B SYSTEM-WISE UTILIZATION

The system-wise utilization of computing units from PGLBox and
the MPI cluster is further presented in this section. Figure 11(a)(b)
presents the utilization of GPUs on PGLBox and CPUs on the MPI
cluster during the training of the DeepWalk model. We can observe
that PGLBox has a higher utilization (pure GPUs) than the MPI
cluster (pure CPUs) and the curve of PGLBox is more stable than
the MPI cluster with DeepWalk. Note that the size of the graph
generated by DeepWalk and GraphSage differs due to the size of
sub-datasets, where the sub-dataset trained with DeepWalk (7.8
hundred million nodes, 110 hundred million edges) is nearly twice
as large as the one with GraphSage (13 hundred million nodes,
200 hundred million edges). In this case, the GPU utilization with
GraphSage on PGLBox is relatively lower than Deepwalk, while
the CPU utilization with GraphSage on the MPI cluster still keeps
at a high level.

C FURTHER DISCUSSION ON EXPERIMENTS

C.1 GNN vs LM as the feature encoder

We also consider using LM to fit the problem, while by now it
is still a challenging task. Language modeling (LM) involves the
use of various statistical and probability techniques to determine
the likelihood of a given word sequence appearing in a sentence.
LM analyze the main body of text data, providing a foundation
for their word predictions. In our graph training, the input text is
determined by user clicks, and we process it as feature input for
the graph training, which differs from traditional language model
probability predictions.
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(a) DeepWalk - GPU utilization on PGLBox

(b) DeepWalk - CPU utilization on the MPI cluster

(c) GraphSage - GPU utilization on PGLBox

(d) GraphSage - CPU utilization on the MPI cluster

Figure 11: System-wise utilization comparison between
PGLBox and the legacy trainer. The vertical axis denotes the
percentage (%) of usage, and the horizontal axis indicates the
training time elapses in a single epoch.

C.2 Updating Embeddings

Currently, our embedding update optimizer supports Adagrad and
Adam, with each optimizer storing different variables. For example,
under the Adagrad optimizer, each node embedding stores the
gradient square sum (g2sum) and the actual embedding used in
the network. Under the Adam optimizer, each node embedding
stores betal, beta2, gradient square sum (g2sum), and the actual
embedding used in the network. Node embeddings are updated
within each batch during the backward computation process. The
push_sparse operator is called to compute the gradient for each
node embedding, and the embeddings are updated in place on the
GPU card directly based on the optimizer algorithm being used.

C.3 Training with Multiple GPUs

We do employ data parallelism during the sampling phase by divid-
ing different sampling starting points across multiple GPU cards.
Each card is allocated separate storage space for sampling results,
and the sampling is conducted independently for different starting
points without synchronization between cards. During the training
phase, each card accesses the sampled result space to form pairs
for training instances. The 8 GPU cards share GNN parameters,
and each card pulls GNN parameters before mini-batch training
to perform forward and backward calculations, obtaining gradi-
ents for updating GNN parameters. The 8 cards synchronize GNN
parameters after each mini-batch ends and pull the same GNN
parameters before the next mini-batch begins. Note that, our sam-
pling approach is a combination of data parallelism and pipeline
parallelism.
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