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ABSTRACT

While Learning to Rank (LTR) models on top of transformers have
been widely adopted to achieve decent performance, it is still chal-
lenging to train the model with sufficient data as only an extremely
small number of query-webpage pairs could be annotated versus tril-
lions of webpages available online and billions of web search queries
everyday. In the meanwhile, industry research communities have re-
leased a number of open-source LTR datasets with well annotations
but incorporating different designs of LTR features/labels (i.e., het-
erogeneous domains). In this work, inspired by the recent progress
in pre-training transformers for performance advantages, we study
the problem of pre-training LTR models using both labeled and
unlabeled samples, especially we focus on the use of well-annotated
samples in heterogeneous open-source LTR datasets to boost the
performance of pre-training. Hereby, we propose S?phere—Semi-
Supervised Pre-training with Heterogeneous LTR data strategies for
LTR models using both unlabeled and labeled query-webpage pairs
across heterogeneous LTR datasets. S?phere consists of a three-
step approach: (1) Semi-supervised Feature Extraction Pre-training
via Perturbed Contrastive Loss, (2) Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets and (3) End-to-end LTR Fine-tuning
via Modular Network Composition. Specifically, given an LTR model
composed of a backbone (the feature extractor), a neck (the module
to reason the orders) and a head (the predictor of ranking scores),
S?phere uses unlabeled/labeled data from the search engine to
pre-train the backbone in Step (1) via semi-supervised learning;
then Step (2) incorporates multiple open-source heterogeneous
LTR datasets to improve pre-training of the neck module as shared
parameters of cross-domain learning; and finally, S>phere in Step
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(3) composes the backbone and neck with a randomly-initialized
head into a whole LTR model and fine-tunes the model using search
engine data with various learning strategies. Extensive experiments
have been done with both offline experiments and online A/B Test
on top of Baidu search engine. The comparisons against numbers
of baseline algorithms confirmed the advantages of S?phere in
producing high-performance LTR models for web-scale search.
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1 INTRODUCTION

Learning to Rank (LTR) models on top of deep neural networks [24,
31], such as transformers [36], have been widely used in web search
and achieved good performance in webpages ranking, such as
higher Hit Rate (HR), Discounted Cumulative Gain [14] (DCG)
and their derivatives. Given trillions of webpages available online
and billions of queries for web search, a search engine usually em-
ploys annotators, who label the relevance score for a number of
query-webpage pairs, to facilitate LTR model training.

While annotating massive collections of query-webpage pairs
with relevance scores is resource-consuming for a search engine [29],
the leading players in the community, such as Yahoo!, Microsoft
Bing and Baidu, have released several representative open-source
LTR datasets [6, 29, 44], incorporating well-annotated query-webpage
pairs with precise but using different features (i.e., variables de-
signed for ranking) and labels (i.e., scales of relevance scores for
webpages ranking). These datasets were collected from different
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search engines but all for similar LTR tasks. We call these datasets
as heterogeneous LTR datasets in this work. As it has become a
common practice to leverage large-scale open-source datasets to
pre-train models, especially transformers, for better performance in
computer vision [13] and natural language processing [11] domains,
we are wondering whether we can incorporate the open-source LTR
datasets into pre-training LTR models for enhanced ranking perfor-
mance despite the heterogeneity in their features and labels design.
In this work, inspired by the recent progress in pre-training
transformers for performance advantages, we study the problem of
pre-training LTR models for a search engine using a huge amount
of unlabeled query-webpage pairs with few labeled samples. We
especially focus on the use of well-annotated samples in multiple
heterogeneous open-source LTR datasets, where the feature and
sample space of every dataset are different from each other. To
achieve the goal, there remain several non-trivial issues as follows:

o LTR representation pre-training over heterogeneous features. The
goal of pre-training over open-source heterogeneous LTR data is
to learn the “logic and reasoning” of webpage ranking from these
datasets. However, the feature sets used in these LTR datasets are
different, and it is difficult to train a unified extractor working on
all these feature sets. In this way, a unified set of representations
should be learned from heterogeneous datasets for LTR, and then
the “logic and reasoning” of webpage ranking could work on top
of the unified representations despite feature heterogeneity. Thus,
there needs to pre-train the feature extractor and the module [12]
for ranking separately, so as to extract features from search engine
data while inheriting the ranking capacity from massive open-
source data, while ensuring the feature extractor and module work
together via unified representation in the final LTR model.

LTR representation pre-training losses and objectives. In computer
vision and natural language processing practice, pre-training is
commonly formulated as a supervised and/or self-supervised
learning procedure, where the supervised learning relies on in-
tensive data annotation and self-supervised learning needs well-
designed losses to feedback models with meaningful supervision
signals, such as reconstruction loss and contrastive loss. In our
LTR settings, where labels for most query-webpage pairs at the
search engine are not available, supervised pre-training is with
limited capacity; in the meanwhile, the existing work that designs
reconstruction losses or contrastive losses for self-supervision
with LTR data is quite few. Thus, semi-supervised learning is de-
sired to pre-train the model with labeled data, unlabeled data (e.g.,
with pseudo labels), and novel self-supervision losses.

To address the above issues, we modularize the LTR models into
three components in a row—i.e., a feature extractor (backbone)
learned from the search engine data to generate the unified rep-
resentation, a ranker (neck) learned from both search engine and
open-source data via the unified representation, and a scorer (head)
that predicts ranking scores using the outputs of the ranking mod-
ule. Specifically, we propose S>phere—Semi-Supervised Pre-training
with Heterogeneous LTR data strategies for LTR models using both
unlabeled and labeled pairs across heterogeneous LTR datasets.
Specifically, on top of the backbone, neck and head, S?phere
consists of a three-step approach: (1) Semi-supervised Feature Ex-
traction Pre-training via Perturbed Contrastive Loss, (2) Cross-domain
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Ranker Pre-training over Heterogeneous LTR Datasets and (3) End-
to-end LTR Fine-tuning via Modular Network Composition. S*phere
pre-trains the backbone in Step (1) via semi-supervised learning
using unlabeled/labeled data from the search engine. Then S?phere
in Step (2) incorporates multiple open-source heterogeneous LTR
datasets to train multiple LTR models and obtains the neck as a set
of shared parameters in these networks. Finally, S?phere composes
the backbone, neck and head into a whole LTR model. In Step (3),
it randomly re-initializes the head and fine-tunes the model using
search engine data via LTR loss using a warm-up fine-tuning strat-
egy, where the warm-up strategy first freezes the weights of the
neck to let the backbone and head adapt the input and output of the
neck in first several epochs, then leverages end-to-end training with
whole network and updates all weights to fit the data. In summary,
the main contributions are summarized as follows:

e We study the problem of pre-training LTR models using both
labeled/unlabeled data collected at the search engine and incor-
porating the open-source heterogeneous LTR datasets to boost
the performance of webpage ranking for search. To the best of
our knowledge, it is the first work in pre-training LTR models
that incorporates both search engine data and open-source data
by addressing data heterogeneity, modular networks and semi-
supervised learning issues.

We propose S?phere consisting of three steps to pre-train the

feature extractor and the ranking module separately using search

engine and open-source data accordingly via various losses in

a semi-supervised manner. Then S>phere composes the feature

extractor (backbone), ranker module (neck) and scorer module

(head) to predict ranking scores together to form the end-to-end

LTR model and fine-tune the model on the search engine data

using warm-up strategies.

e We carry out extensive experiments with both offline experi-
ments and online A/B tests on top of Baidu Search engine to ver-
ify the effectiveness of S?phere. We compare S?phere against
a number of state-of-the-art baseline algorithms. Specifically,
we test the performance of these algorithms with four ratios
of labeled data, i.e., 5%, 10%, 15% and 20% of query-webpage
pairs at the search engine side labeled with relevance scores. The
comparisons confirmed the advantages of S?phere in producing
high-performance LTR models for web-scale search. In offline
comparisons, S?’phere outperforms competitor systems with
1.03%~4.09% on NDCG@4. In the A/B Test with 5% real Baidu
web search traffics, we observe the advantage of Szphere which
achieves ANDCG@4 = 0.09%~0.75% in parallel comparisons.

2 S?’PHERE DESIGN AND ALGORITHM

In this section, we first formulate the research problem of LTR, then
detail the S?phere design and algorithm.

2.1 Problem Formulation

In this section, we introduce the formalization of the LTR task.
Given a set of search queries Q = {q1, g2, ...} and all archived
webpages D = {d1,dy, ...}, for each query ¢; € Q, the search
engine could retrieve a set of relevant webpages denoted as D;
{di, dé, ...} € D. By employing annotation, a collection of rank-

ing scores y; = {yi, yé, ...} can be associated with g;, effectively
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Figure 1: Sphere in three steps: (1) Semi-supervised Pre-training via Perturbed Contrastive Loss, (2) Cross-domain Ranker
Pre-training over Heterogeneous LTR Datasets, and (3) End-to-end LTR Fine-tuning via Modular Network Composition.

capturing the relevance of each webpage d. € D; to the search
query q;. We adhere to the settings established in [29], where we
adopt a relevance label scaling approach from 0 to 4 to indicate
varying levels of relevance. Note that the features of search queries
and webpages are extracted by a pre-trained language model and
constructed through Baidu’s retrieval system [23]. All these raw
features are used as the inputs of webpage ranking.

Given the set of query-webpage pairs with relevance label anno-
tations, we utilize a set of triples (i.e., 7~ L=
(g3, D3,93), ... }) to represent. This work aims to obtain an LTR
scoring function f : Q X D — [0, 4], where the learning objective
of LTR is redefined to learn a scoring function f which minimizes
the ranking loss as
17 | D]

= 2B 21wy 6.

L2

)

i=1

where ¢ denotes the ranking loss between the predicted relevance of
webpage d;. for query g; and the corresponding ground truth rele-

vance label y; Attributing the outstanding scalability, S>phere
is applicable with standard loss functions (i.e., pointwise, pair-
wise, and listwise). Given that annotators have limitations in la-
beling query-webpage pairs due to cost and time constraints, in-
corporating unlabeled query-webpage pairs becomes crucial in
LTR. Therefore, to formulate the semi-supervised LTR setting,

{(q1,D1,y,), (q2. D2, 1),
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we introduce a set of unlabeled query-webpage pairs denoted as
TU = {(¢}. D)), (g5, D3),...} € @x 29, where the number of
instances in 77U greatly exceeds the number of instances in 7.
The research goal is to optimize above LTR problem by advancing
representation learning on top of the legacy LTR system [45] and
deploy the solution in the search engine introduced in Section 4.

2.2 Overall Framework Design

As illustrated in Figure 1, S>phere consists of three steps: (1) Semi-
supervised Feature Extraction Pre-training via Perturbed Contrastive
Loss, (2) Cross-domain Ranker Pre-training over Heterogeneous LTR
Datasets, and (3) End-to-end LTR Fine-tuning via Modular Network
Composition. Specifically, in Step (1), S?phere first generates high-
quality pseudo labels for each unlabeled query-webpage pair through
semi-supervised learning of multiple/diverse LTR models based on
various ranking losses. Then, S?phere learns generalizable repre-
sentations with the transformer network (i.e., the backbone), which
uses the contrastive loss for the reconstruction of perturbed data. In
Step (2), given the generalizable representations of query-webpage
pairs, S®phere leverages a Multi-Layer Perception (MLP) mecha-
nism (i.e., the neck) to conduct a cross-domain pre-trained ranker,
which utilizes discriminative loss to execute the ranking task on
heterogeneous LTR datasets. Eventually, in Step (3), Szphere com-
bines the transformer network (backbone), the pre-trained MLP
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mechanism (neck), and a scorer (i.e., the head) to conduct an end-
to-end modular LTR network and fine-tunes the modular network
on the pseudo-labeled dataset collected from Baidu Search.

2.3 Semi-supervised Feature Extraction
Pre-training via Perturbed Contrastive Loss

This step consists of two algorithms: Self-tuned Label Propagation
and Feature Extraction Pre-training via Perturbed Contrastive Loss.

2.3.1 Self-tuned Label Propagation. Given the overall sets of
queries Q and the set of all webpages D, S?phere first obtains
each possible query-webpage pair from the both datasets, denoted
as (qi,d{) for Vg; € Q and Vd{ € D; C D, ie., the ji" webpage
retrieved for the i query. For each query-webpage pair (g;, d{ ),
S?phere further extracts an m-dimensional feature vector x;, j rep-
resenting the features of the j' webpage under the i*" query.
Then, the labeled and unlabeled sets of feature vectors can be pre-
sented as XL = {(xi,j,y§.)|V(qi,Di,y) € 7L and Vdj. € D;} and
XU = {xijI¥(qi, D;) € 7V}, $2phere further takes self-tuning
approach [21] to propagate labels from annotated query-webpage
pairs to those unlabeled ones.

Specifically, S°phere first trains an LTR model based on X only
and then predicts the ranking scores of unlabeled pairs in XV using
the trained model. While S?phere setting the predicted scores as
pseudo labels for XU, it repeats training a new/updated LTR model
using both labeled/pseudo-labeled data and predicts new/updated
scores for unlabeled data with the new/updated model accordingly.
After T repeats of self-tuning, S?phere assigns every unlabeled
query-webpage pair in XU an accurate estimate of the ranking
score, and then fuses them with XL into a new labeled set X€.

2.3.2 Feature Extraction Pre-training via Perturbed Con-
trastive Loss. Asshown in Figure 1, S?phere leverages self-attentive
transformers to learn generalizable representations of query-webpage
pairs via perturbed contrastive loss in Feature Extraction Pre-training
via Perturbed Contrastive Loss.

Firstly, given an m-dimensional feature vector X; j of a query-
webpage pair (X;j, yz.) € XC, S%phere leverages a self-attentive
encoder to learn a generalizable representation z; ;. S?phere (1) is
fed a vector into a fully connected layer and produces a hidden rep-
resentation. Later, S’phere (2) feeds the hidden representation into
a self-attentive autoencoder, which consists of E encoder blocks of
transformer. Specifically, each encoder block incorporates a multi-
head attention layer and a feed-forward layer, both followed by
layer normalization. S?phere (3) generates the learned representa-
tion z; j from the last encoder block. For each original feature vector
x;,j, the whole training process can be formulated as z; j = f5(xi,5),
where 6 is the set of parameters.

Then, S?phere utilizes a simple yet useful MLP mechanism for
the reconstruction task. Specifically, for each representation z; ; pro-
duced from the self-attentive autoencoder, S>’phere leverages the
MLP mechanism to map z;; to a generalizable representation z;) It
which has the same dimension with the original feature vector X; ;.
The whole training process can be formulated as z;,j = go (zij),
where the 0’ is the set of parameters.
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Eventually, S?phere jointly optimizes the parameter sets 6 and
0’ to minimize the perturbed contrastive loss as

1 Q| 1 | D
LContra =TA7 Z T~ Z Lcontra (i'i,j,zgyj) (2)
@l £\ 1Dl &

where fconsrq is the squared error, which could be defined as
. . 2
Lcontra (xi,j:Z;’j) = ”xi,j - Z:j” . (3)

2.4 Cross-domain Ranker Pre-training over
Heterogeneous LTR Datasets

As presented in Figure 1, given both search data and open-source
data, S?phere in Step (2) trains multiple LTR models using hetero-
geneous LTR datasets via discriminative (LTR) learning, where a
set of parameters (in MLP) is shared as the neck of these models
and is expected to obtain the capability of ranking from all these
datasets.

Given the learned representation z; ; generated from Feature
Extraction Pre-training via Perturbed Contrastive Loss, S’phere
adopts an MLP model with a fully-connected layer to calculate
the predicted score s; j. The whole process can be formulated as
sij = fo(zij), where 0 is the set of discriminative parameters.
Against the ground truth, S®phere leverages the discriminative
loss function, which can be defined as

Q| |D;|
1 1 :
O — £, ( l., . ) 4
Lpisc ] i; D] ;:1 LTR (Y} Si.j (4)

where £ TR represents the standard LTR loss function (i.e., point-
wise, pairwise and listwise).

To accomplish both perturbed contrastive tasks (Step (1)) and
discriminative (Step (2)) simultaneously, S>phere jointly optimizes
the perturbed contrastive loss Lcontrq and the discriminative loss
Lpisc as the final loss function as

Lrinal = «Lcontra + (1 — @) Lpisc, 6)

where the loss weights a € [0, 1] is a hyper-parameter to balance
two loss functions.

Given heterogeneous LTR datasets {Xc, .. (\’f]} the goal of
S?phere is to obtain the pre-trained neck, which gains the reason-
ing capacity. In order to get the pre-trained neck on heterogeneous
LTR datasets, S?phere adopts the pre-training procedure shown in
Algorithm 1.

2.5 End-to-end LTR Fine-tuning via Modular
Network Composition

Given the pre-trained neck utilizing the above two steps, S’phere
combines a backbone, the pre-trained neck, and a head to conduct
a modular network for the downstream LTR task. Finally, S>phere
fine-tunes the modular network to execute the LTR task on the
pseudo-labeled search dataset, which accomplishes the end-to-end
LTR fine-tuning.

3 TRAINING PARADIGM

The conventional training paradigm of pre-training and fine-tuning
has been routinely leveraged and obtained significant achievements
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Algorithm 1: Pre-train S?’phere on Heterogeneous
LTR Datasets
Input: the number of epochs eps; hyper-parameters for
final loss a, ; heterogeneous LTR datasets {XC, e Xf]};

backbones {Bj,...,By}; heads {Hi,...,HN}
Output: Np,. — the pre-trained neck
1: forie{1,...,N} do
2 Choose the LTR dataset Xl.c ;
3 forep e {1,...,eps} do
4 Choose backbone B; and H;;
5: Evaluate contrastive loss Lcontra;
6 Evaluate discriminative loss £Lpjsc;
7 Calculate final loss Lginar = @Lcontra + BLDisc;
8 end for
9:  Update Npre;
10: end for

11: return Npye;

across many tasks. Nevertheless, this paradigm has not been demon-
strated to be appropriate for pre-training a reasoning neck on a
large-scale ranking system for web search. Therefore, we propose
a novel training paradigm for S?phere to fit the ranking task at
Baidu Search. Specifically, the training paradigm takes a three-stage
strategy: (1) Pre-training on Heterogeneous Datasets, (2) Warm-up
Fine-tuning, and (3) Post-fine-tuning. According to practical experi-
ence in deploying the ranking system for large-scale search engines,
the training paradigm is designed to be more effective and efficient.

Stage 1: Pre-training on Heterogeneous Datasets. As referred
to in Section 2, we leverage S>phere to accomplish pre-training on
heterogeneous datasets. S’phere is pre-trained on heterogeneous
datasets, i.e. MSLR-Web30K, MQ2007 and MQ2008, to learn the
reasoning capability for the neck by cross-domain ranking-task
learning. Specifically, we first train S>phere on MSLR-Web30K and
obtain the pre-trained neck. Then, the pre-trained neck combines a
backbone and a head to compose a new modular network, which
is trained on MQ2007 to execute the pre-training procedure. Even-
tually, we pre-train a new modular network with the trained neck
on MQ2008. In particular, three pre-trained datasets contain mas-
sively heterogeneous features which could enhance the reasoning
capability of S?phere.

Stage 2: Warm-up Fine-tuning. In this stage, we propose
Warm-up Fine-tuning to initialize the modular network. Specifi-
cally, following Pre-training on Heterogeneous Datasets, we first add
a fully-connected layer to the head and tail of the pre-trained neck,
respectively. Next, we freeze the weights of layers in the pre-trained
neck and fine-tune the rest parts of S?phere in the first several
epochs on the dataset collected from Baidu Search. In this way,
S%phere could be initialized in a low-cost and rapid way instead of
jointly fine-tuning the whole modular network.

Stage 3: Post-fine-tuning. In the final stage, given the warm-up
fine-tuned modular network, we jointly fine-tune the whole mod-
ules on the dataset collected from Baidu Search. In particular, we
leverage the warm-up fine-tuned S?phere to simultaneously accom-
plish the discriminative learning (LTR) and perturbed contrastive
learning tasks. After stage Post-fine-tuning, we finish the proposed
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Figure 2: Deployment of S?phere at Baidu Search.

training paradigm and accomplish the end-to-end pre-training and
fine-tuning for S2phere.

4 DEPLOYMENT OF S?PHERE

In this section, we present the deployment details of S?phere in
the context of Baidu Search. As illustrated in Figure 2, Baidu Search
is essential with three stages as follows: (1) Webpage Collection, (2)
Webpage Indexing and (3) Retrieval and Ranking.

Webpage Collection. To handle the vast number of webpages
available on the web, Baidu Search employs an efficient and pow-
erful Web Crawler. Web Crawler is responsible for collecting and
downloading webpages. The process begins with Web Crawler scan-
ning a list of links to identify new webpages and those that have
been updated. It selectively stores the valid links containing the
desired content in a large downloading list. Then, based on the
real-time web traffic of Baidu Search, Web Crawler initiates the
downloading process for the websites present in the list.

Webpage Indexing. Baidu Search efficiently stores the vast
amount of downloaded webpages in distributed archival storage
systems, utilizing the capabilities of Fatman [26]. To achieve high-
performance search, Baidu Search builds efficient indices by em-
ploying DirectLoad [27]. Fatman leverages elastic resources, such
as underutilized servers and temporarily available storage, across
multiple regional data centers of Baidu, significantly reducing stor-
age costs. In parallel, DirectLoad ensures load balancing of indexing
tasks across these data centers.

Retrieval and Ranking. To facilitate the content retrieval by
search queries, Baidu adopts an extremely large-scale Chinese pre-
trained language model [32] for feature extraction and builds up an
ERNIE-based semantic content retrieval system [23]. Given the re-
trieved contents for a query, the Baidu search engine leverages LTR
systems, such as S?phere or the legacy system [45], for webpage
ranking. Note that the raw features of webpages and search queries
for LTR (introduced in Section 2.1) are extracted by the language
model and the retrieval system [23].

o Offline Training. In terms of webpages ranking in online settings,
following the proposed training paradigm mentioned in Section 3,
S?phere maintains an end-to-end fine-tuned LTR model via pre-
training on heterogeneous LTR datasets and fine-tuning on the
dataset streamed and annotated by Baidu Search.

e Online Serving. For online inference, S?phere adopts the fine-
tuned LTR model to serve the online ranking tasks. Given a query
and a webpage for online ranking, S?phere first transforms them
into an extracted query-webpage feature. Then, S?phere picks up
their feature representations and passes them to the fine-tuned
LTR model for inference in a fast manner at Baidu Search. Note
that, to further accelerate online DNN inference procedures, fea-
tures/embedding of queries/webpages and the weights of DNN
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models might be cached or re-stored over heterogeneous mem-
ory/storage devices [22] for fast look-ups, reads and updates.

5 EXPERIMENTS

To investigate the effectiveness of S?phere, we conduct extensive
offline and online experiments on a large-scale search engine. In
this section, we first introduce the experimental details. Then, we
present the result of offline and online experiments to prove the
effectiveness of our proposed model.

5.1 Datasets

5.1.1 Heterogeneous Open-source LTR Datasets. We leverage
three standard, publicly available datasets for pre-training.

o MSLR-Web30K contains 30,000 queries. Each query-webpage
pair is represented as a 136-dimensional feature vector.

e MQ2007 contains 1,692 queries. Each query-webpage pair of
MQ2007 is represented as a 46-dimensional feature vector.

e MQ2008 contains 784 queries. Similar to MQ2007, each query-
webpage pair of MQ2008 is represented as a 46-dimensional
feature vector.

Each query-webpage pair of the above three datasets is associated
with a relevance label on a scale from 0 to 4 to represent levels
of relevance from irrelevant to perfectly relevant. In our experi-
ments, we perform the five-fold cross-validation [29] and report
the average results across five folds.

5.1.2 Search Dataset. We collect the dataset with 65,000 queries
and over 3,340,000 query-webpage pairs from Baidu Search. For
each query, we collect webpages from each stage of the search
pipeline to ensure the diversity of the dataset. The dataset is an-
notated on our crowdsourcing platform, where a group of profes-
sionals annotate each query-webpage pair with an integer score
that ranges from 0 (bad) to 4 (perfect). Each query-webpage pair is
also represented as a real-valued feature vector. We randomly split
the dataset into training set (39,000 queries), validation set (13,000
queries), and test set (13,000 queries). In our experiments, features
are standardized before feeding them into LTR models.

5.2 Evaluation Methdology

Normalized Discounted Cumulative Gain (NDCG) [15] is a widely
employed metric for assessing relevance in ad-hoc search engine
contexts. It provides a comprehensive evaluation of the quality of
a ranking list generated by an LTR model for a given query and
its associated webpages. The LTR model predicts scores for each
webpage and generates the ranking list by sorting the scores in
descending order, considering the graded relevance of the webpages.
Additionally, the value of NDCG ranges from [0, 1], and a higher
NDCG@N indicates a better LTR model. In this work, we consider
the NDCG of the top 4 and 10 results (i.e., NDCG@4 and NDCG@10)
for business and research purposes.

Positive-Negative Ratio (PNR) is a widely used pairwise metric
for assessing the performance of search relevance in the industry.
Given a query g and its associated ranked webpages Dg, PNR can
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be defined as the ratio of concordant pairs to discordant pairs as

Sdydzen, i > yi} - 1{f (¢.di) > f (q.d;)}
de,dnqu H{ym > yn} - 1{f (¢.dm) < f (¢.dn)}’

where 1 {x > y} is an indicator function (i.e., 1 {x > y} = 1if x >
y, and 0 otherwise). PNR evaluates the consistency between the
ground truth and the ranking score. In our offline experiments, we
report the average values over all test queries.

Interleaving [9] is a widely used metric for evaluating the per-
formance of an industrial search engine. In interleaved comparison,
two results generated from different systems are delivered to users,
whose click-through actions would be attributed to the system that
delivers the corresponding results. Specifically, the gain of the new
system A over the base system B could be formalized as

PNR =

wins(A) + 0.5 X ties(A, B)
wins(A) + wins(B) + ties(A, B)

Apg = - 0.5, (7)
where wins(A) (or wins(B)) is a counter to calculate the number of
times the user clicks the result generated from system A (or B), and
ties(A, B) is otherwise increased by 1. Therefore, A 4 > 0 indicates
that A is superior to B.

Good vs. Same vs. Bad (GSB) [41] is an online pairwise metric
evaluated by professional annotators. In manual comparison, two
results produced by the new system and the base system are pro-
vided to human experts that are required to judge which result is

better. Specifically, GSB could be computed as

#Good — #Bad

AGSB = ,
#Good + #Same + #Bad

®)

where #Good (or #Bad) is the number of results generated from the
new system better (or worse) than the base system, and #Same in-
dicates two results are equally good or bad. In our online evaluation,
we conduct balanced interleaving and manual evaluation to compare
two online systems side-by-side.

5.3 Loss Function and Competitor Systems

To evaluate S?phere comprehensively, we adopt different state-of-
the-art ranking losses as follows:

e Root Mean Square Error (RMSE) is a commonly employed
pointwise loss of predicated relevancy.

e RankNet [4] and LambdaRank [4] are two popular pairwise
losses for LTR tasks both in research and industry.

e ListNet [5] and ListMLE [38] are two listwise losses, which
optimize the agreement between the prediction and ground truth.

e ApproxNDCG [28]and NeuralNDCG [25] are also two listwise
losses that directly optimize the evaluation metric (i.e., NDCG).

Regarding the ranking model, we compare S?phere with the state-
of-the-art ranking model as follows:

e MLP refers to a popular ranking model and has been extensively
employed in the industry and research.

o Context-Aware Ranker (CAR) [24] refers to a ranking model
based on transformer architecture, which inputs raw feature
vectors of items in the same list and outputs real-world scores.

o XGBoost [8] refers to a Gradient Boosting Decision Tree (GBDT)-
based ranking model with a pairwise loss function.
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Table 1: Offline comparative results on NDCG@4 and NDCG@10 under various ratios of labeled data.

Model 5% 10% 15% 20%

NDCG@4 NDCG@10 NDCG@4 NDCG@10 NDCG@4 NDCG@10 NDCG@4 NDCG@10
RMSE 49.09 £ 0.12 52.80 £0.43 53.48 £ 0.15 57.32 £ 0.26 55.76 £ 0.09 59.82 £ 0.34 57.78 £ 0.25 63.18 £ 0.17
RankNet 48.76 £ 0.27 52.45 £ 0.19 53.02 + 0.35 56.90 £ 0.08 55.52 £ 0.14 59.26 + 0.34 57.56 £ 0.26 63.82 £ 0.22
LambdaRank 50.21£0.18 53.63 £0.24 54.18 £ 0.35 58.09 £0.43 56.48 £ 0.31 60.47 £ 0.06 59.46 £ 0.15 63.73 £ 0.23
ListNet 49.64 + 0.42 53.04 £0.13 53.89 £ 0.19 57.62 £ 0.38 56.19 £ 0.17 59.96 £ 0.10 58.13 £ 0.08 63.29 £ 0.17
ListMLE 48.09 £ 0.26 52.03 £0.19 52.50 £ 0.08 56.24 £ 0.20 54.84 £ 0.09 58.81£0.44 56.80 £ 0.38 62.20 £ 0.25
ApproxNDCG 48.37 £ 0.35 52.21+£0.17 52.83 £ 0.22 56.53 £ 0.14 55.18 £ 0.45 59.07 £ 0.33 57.17 £ 0.31 62.52 £ 0.24
NeuraINDCG 50.08 £ 0.43 53.42 £0.48 54.27 £ 0.36 57.84 £ 0.41 56.50 £ 0.05 60.33 £ 0.19 59.42 £ 0.16 63.45 £ 0.20
CAR+RMSE 49.73 £ 0.37 52.43 £ 0.05 53.78 £ 0.32 57.45 £ 0.14 56.20 £ 0.03 59.97 £ 0.02 58.63 £ 0.28 63.48 £ 0.29
CAR+RankNet 50.01 £ 0.27 52.86 £ 0.27 53.29£0.14 57.43 £0.35 57.32£0.28 60.02 £ 0.20 58.54 £ 0.31 63.85 £ 0.49
CAR+LambdaRank 51.26 £ 0.38 54.37 £0.23 54.85 £ 0.40 58.82 £ 0.36 57.87 £ 0.26 61.57 £ 0.13 59.56 £ 0.27 64.78 + 0.30
CAR+ListNet 51.09 £ 0.42 54.42 £ 0.38 54.63 £ 0.22 58.90 £ 0.19 57.65 £ 0.31 61.04 £ 0.37 60.01 £ 0.07 65.43 £ 0.11
CAR+ListMLE 50.14 £ 0.23 53.08 £ 0.17 53.40 £ 0.25 57.63 £ 0.18 56.48 £ 0.26 60.03 £ 0.34 58.85 £ 0.42 64.28 £ 0.28
CAR+ApproxNDCG 50.72 £ 0.32 53.75 £ 0.47 54.34 £ 0.36 58.29 £ 0.12 57.32£0.13 60.65 £ 0.26 59.87 £ 0.10 65.13 £ 0.07
CAR+NeuraNDCG 50.83 £ 0.34 54.08 £ 0.36 54.57 £ 0.24 58.43 £ 0.34 57.46 £ 0.24 61.08 + 0.35 60.03 £ 0.26 65.43 £ 0.34
XGBoost 48.37 £ 0.10 52.12 £ 0.36 52.83 £0.19 56.45 £ 0.45 56.14 £ 0.38 60.03 £ 0.31 58.03 £0.17 63.61 £ 0.38
LightGBM 51.01 £0.16 54.86 £ 0.27 54.98 £ 0.35 58.43 £ 0.21 57.32 £ 0.42 61.02 £ 0.40 59.54 £ 0.14 64.85 £ 0.23
Szphere+RMSE 50.84 £ 0.26 54.07 £ 0.46 54.94 £ 0.39 58.27 £0.42 56.93 £ 0.28 60.75 £ 0.19 60.04 £ 0.09 64.79 £ 0.35
Szphere+RankNet 51.26 + 0.45 54.52 £ 0.32 55.02 £0.43 58.56 £ 0.35 57.02 £ 0.28 61.04 £ 0.21 60.35 + 0.34 65.30 £ 0.43
Szphere+LambdaRank 51.84 £ 0.34 55.34 £ 0.27 55.71 £ 0.18 59.42 + 0.25 57.71 £ 0.19 61.80 £ 0.33 60.87 £ 0.17 66.28 £ 0.15
Szphere+ListNet 52.09 £ 0.47 55.78 £ 0.36 56.04 + 0.30 59.63 £ 0.21 58.02 £0.13 62.07 £ 0.23 61.46 £ 0.08 66.57 £ 0.06
Szphere+ListMLE 51.48 + 0.24 54.82 £ 0.44 55.35 £ 0.26 58.64 £ 0.07 57.28 £ 0.05 61.34 £ 0.13 60.58 £ 0.28 65.52 £ 0.09
Szphere+ApproxNDCG 52.33 £0.19 55.87 £ 0.26 56.26 + 0.17 59.75 £ 0.05 58.21 £ 0.47 62.25 £ 0.48 61.73 + 0.04 66.73 £ 0.40
Szphere+NeuralNDCG 52.46 + 0.09 56.01 + 0.24 56.85 + 0.32 59.87 £ 0.16 58.90 + 0.15 62.38 + 0.08 61.72 £ 0.47 66.84 + 0.09

o LightGBM [18] is the most popular tree-based ranking model. In
our work, we implement LighGBM with a listwise loss function,
which outperforms other baselines [30].

Owing to the prior experience and high cost of deploying ranking
models, we compare S?phere with the above models without more
previous ranking models (e.g., RankSVM [17], GSF [2], DLCM [1],
et al.). For online evaluation, due to the restriction of business infor-
mation disclosures, this work reports the improvement to measure the
difference between S*phere and the legacy system [45].

5.4 Experimental Settings

For Self-tuned Label Propagation, we adopt LightGBM as the ranking
model and set the number of trees as 200, and the learning rate
as 0.01. Moreover, we replace 5% query-webpage pairs under each
query of X€ with Gaussian noise to conduct the corrupted input.
We choose the encoder part of transformer, the MLP-based network,
and the scorer with various LTR loss functions as the backbone,
neck and head. Specifically, for the self-attentive autoencoder, the
number of encoder blocks E is set as 4. Moreover, the number of
attention heads is set as 2 for RMSE and RankNet. For LambdaRank,
ListNet, ListMLE, ApproxNDCG, and NeuraNDCG loss, the number
of attention heads is 4. We set hyper-parameter a as 0.1. For the
training paradigm, the learning rate is set as 0.001 for 10 epochs in
Warm-up Fine-tuning. Then, we jointly fine-tune the whole modules
to update all weights to fit search data in Post-fine-tuning.

5.5 Offline Experimental Results

5.5.1 Comparative Results. Table 1 presents the offline result
of $2phere compared with competitor systems on NDCG@4 and
NDCG@10. Intuitively, we could obverse that S?’phere outper-
forms all competitors with different losses under four ratios of
labeled data. Specifically, our proposed model gains the best per-
formance against all competitors. Particularly, S>phere gains the
largest margin with 4.37%, 4.35%, 4.06% and 4.93% improvements
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Table 2: Offline results on PNR under 5% labeled data.

Model PNR Improvement
MLP + LambdaRank 1.982 -

CAR + LambdaRank 2.146 8.27%
LightGBM 2.109 6.41%
S?phere + NeuraNDCG | 2.157 8.83%

on NDCG@4 and 3.98%, 3.63%, 3.57%, 4.64% on NDCG@10. Fur-
thermore, the performance of our model improves consistently as
the ratio of labeled data increases. S?phere utilizes Semi-supervised
Feature Extraction Pre-training via Perturbed Contrastive Loss to
incorporate diverse signals and reconstruct the corrupted data.
Cross-domain Ranker Pre-training over Heterogeneous LTR Datasets
could pre-train the neck to learn more cross-domain information
via heterogeneous LTR datasets. The pre-trained modular network
is fine-tuned following the proposed training paradigm. Moreover,
there are more phenomena to be observed from the competitor
results. First, CAR-based LTR models achieve the best performance
among competitor systems. Specifically, CAR+LambdaRank shows
the best result for all CAR-based methods. Secondly, for the tree-
based methods, LightGBM performs better than XGBoost under
four ratios of labelled data. Finally, MLP+LambdaRank outperforms
other MLP-based LTR models. Thus, we choose MLP+LamdaRank,
CAR+LambdaRank, LightGBM and S?phere + NeuraNDCG to con-
duct another offline evaluation and sample the result on 5% labeled
data in Table 2. We observe that our proposed model outperforms
the other three competitors. Specifically, S>’phere+NeuralNDCG
gains 2.157 on PNR and advances MLP+LambdaRank by 8.83%.
Moreover, the tree-based model and CAR-based model also outper-
form the MLP-based LTR model, which is consistent in two offline
evaluations. More comparative results on PNR can be found in
Appendix A.1.

5.5.2 Ablation Results. To assess the effectiveness of three key
components in S?phere, we performed extensive ablation experi-
ments in this study. Specifically, S’phere w/o SLP (Self-tuned Label
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Table 3: Ablation studies of Step (1) Semi-supervised Feature
Extraction Pre-training via Perturbed Contrastive Loss and
Step (3) End-to-end LTR Fine-tuning via Modular Network
Composition on NDCG@4 for S?phere with NeuraNDCG.

NDCG@4
Model 5% 0%  15%  20%
SZphere 5246 56.85 5890 6172
S2phere w/o SLP of Step (1) 51.50 5591 5843  61.26
S?phere w/o FEPPC of Step (1) 5181 5601 5819  61.39
S2phere w/o Warm-up Fine-tuning | 51.94  56.15 5849 6147

Table 4: Ablation studies of Step (2) Cross-domain Ranker
Pre-training over Heterogeneous LTR Dataset on NDCG @4 for
S?phere with NeuralNDCG.

NDCG@4

Model 5% 10% _ 15% _ 20%

SZphere w/ LTR Dataset 1& 2& 3 | 52.46 56.85 58.90 61.72
S2phere w/ LTR Dataset 1 51.28 5536  58.60  61.42
S2phere w/ LTR Dataset 2 50.82  54.87  57.59  60.13
S2phere w/ LTR Dataset 3 50.89  54.69 5747  60.09
S2phere w/ LTR Dataset 1 & 2 51.86  56.53  58.69  61.67
S2phere w/ LTR Dataset 1 & 3 5142 5645 5871  61.50
S2phere w/ LTR Dataset 2 & 3 5091  55.17  57.68  60.48

Propagation) of Step (1) leverages a pointwise-based self-training
approach to generate pseudo-labels. $>phere w/o FEPPC (Feature
Extraction Pre-training via Perturbed Contrastive Loss) of Step (3)
directly utilizes the MLP-based LTR model which has the same
structure as the neck on the combined data with Gaussian noise.
S2phere w/o Cross-domain Ranker Pre-training over Heterogeneous
LTR Dataset is the proposed model pre-trained without three cross-
domain LTR datasets. Eventually, S>phere w/o Step (3) can be
considered as S2phere without Warm-up Fie-tuning in terms of our
proposed training paradigm.

As illustrated in Table 3, we present ablation study results of
S?phere+NeuraNCDG w/o Step (1) and Step (3). We could see that
the two steps contribute to positive improvements for S?’phere
under various ratios of labeled data. Table 3 presents that SLP of
Step (1) achieves the improvement with 0.96%, 0.94%, 0.47% and
0.46% on NDCG@4 for S?phere+NeuraNDCG on average under
5%, 10%, 15% and 20%, respectively. Similarly, FEPPC of Step (1) also
improve the performance for S?phere+NeuraNCDG with 0.65%,
0.84%, 0.71%, and 0.33% on NDCG@4 under four ratios of label data.
Besides, the ablation study results of S?phere w/o Warm-up Fine-
tuning could demonstrate the effectiveness of our proposed training
paradigm. Specifically, Warm-up Fine-tuning in our proposed train-
ing paradigm averagely boosts the performance of S?phere with
0.52%, 0.70%, 0.41% and 0.25% on NDCG@4.

Table 4 reports the ablation study results of Cross-domain Ranker
Pre-training over Heterogeneous LTR Datasets (Step (2)) of S?phere+
NeuraINDCG. Specifically, we set the notation of LTR Dataset 1,
LTR Dataset 2 and LTR Dataset 3 as MSLR-Web30K, MQ2007 and
MQ2008, respectively. In general, Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets gains the best performance against
other competitors. Specifically, Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets averagely gains the largest im-
provement for Szphere with 1.64%, 2.16%, 1.43% and 1.63% on
NDCG@4 under four ratios of labeled data, respectively. We also
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Table 5: Performance improvements of the online evaluation.

Aas AGSB
Model Random  Long-Tail | Random Long-Tail
The Legacy System [45] - - - -
CAR+LambdaRank 0.17% 0.25% 3.96% 3.13%
LightGBM 0.14% 0.32% 3.50% 7.50%
S?phere+NeuraNDCG | 0.21% 0.27% 5.00% 6.50%
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Figure 3: Online comparative performance (ANDCG@4) of
S?phere with various losses for 7 days (¢-test with p < 0.05
over the baseline). S’phere could boost the performance com-
pared with the legacy system on all days.

observe that pre-trained S?phere with LTR Dataset 1 obtains the
best performance among three single datasets and has the smallest
margin with LTR Dataset 1 & 2 & 3. Among all compositions of
two LTR datasets, LTR Dataset 1 & 2 achieves the best performance.
Moreover, we could infer that LTR Dataset 1 has the most enormous
impact among the three datasets.

5.6 Online Experimental Results

5.6.1 Interleaving and Manual Evaluation. Table 5 illustrates
performance improvements of three models on Ayp and AGSB.
We first find that S?phere+NeuralNDCG trained under 20% la-
beled data achieves substantial improvements for the online system
on two metrics, which demonstrates the practicability and effec-
tiveness of our proposed model. Specifically, our proposed model
outperforms the legacy system with 0.21% and 5.00% on Ayp and
AGSB, respectively. Also, we observe that S?phere outperforms
the legacy system for long-tail queries whose search frequencies are
lower than 10 per week. Particularly, the advantages of Ayp and
AGSB are 0.27% and 6.50%. Besides, we see that LightGBM gains the
largest margin for long-tail queries, which reveals that tree-based
models could be better adapted to this scenario.

5.6.2 Online A/B Test. During the online A/B test, we performed
a seven-day experiment to compare the ranking system deployed
with S?phere against the legacy system. The implementation details
of the online A/B Test could be found in the Appendix. Figure 3
illustrates the improvement of S?phere with various losses com-
pared with the legacy system on ANDCG@4. S*phere consistently
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enhances performance across all days compared to the legacy sys-
tem, proving its practicality in elevating the performance of Baidu
Search. Moreover, notable advancements are observed as Szphere
delivers significant improvements on top of the Baidu Search frame-
work. Specifically, it is obvious that the largest improvements of
trained S®phere+NeuraNDCG on four ratios of labled data are
0.60%, 0.63%, 0.65% and 0.75% on ANDCG@4, respectively. The
notable advancements observed clearly indicate the effectiveness
of S?phere. Eventually, we could observe that $?phere performs
stably on all days.

6 RELATED WORK

Learning to Rank. We could divide LTR models into three families
according to loss functions: pointwise [10, 20], pairwise [16, 43]
and listwise [5, 34]. The pointwise model transformers ranking
tasks into regression or classification problems to accurately match
labels with query-webpage pairs. However, the pairwise model
formulates a pair of webpages into a webpage pair and redefines
LTR tasks as classification problems. The listwise model considers
the entire webpage list as a single sample and directly optimizes the
evaluation metrics (e.g., NDCG [3, 15, 39]) without decomposing
it into pairwise or pointwise comparisons. In our work, S>phere
leverages both labeled/unlabeled data collected at the search engine
and incorporates open-source heterogeneous LTR datasets to boost the
performance of webpage ranking for search.

Semi-supervised Learning for LTR. Semi-supervised learning
has been utilized for pseudo-label generation in many machine
learning tasks [33, 40], however, the use of semi-supervised learning
in LTR has not been well investigated. [21] takes a semi-supervised
approach to consider the divergence between the prediction of
various LTR models and incorporates such divergence to improve
co-training performance in industrial practice. In this work, inspired
by [21], S? phere takes a self-tuning approach to propagate labels
from annotated query-webpage pairs to unlabeled ones.

Perturbed Contrastive Learning. The essence of perturbed
contrastive learning is to reconstruct corrupted data and learn the
joint probability distribution of samples via the training process.
Variational autoencoder structures [19, 35] have been used to recon-
struct data. Specifically, [35] adopts a cascaded residual autoencoder
adapted from the denoised autoencoder [37] to calculate the resid-
ual and reconstruct the corrupted multi-modal data sequence. In
this work, S? phere utilizes a transformer-based denoised autoencoder
to reconstruct structured data via perturbed contrastive learning.

Open-source LTR Datasets. Open-source LTR datasets sig-
nificantly contribute to the development of the research and ap-
plication of LTR. Nowadays, many large-scale search companies
have proposed their standard and publicly available LTR datasets,
i.e., MSLR-Web30K [29], MQ2007 [29], MQ2008 [29], Yahoo! LTR
dataset [6], and Baidu-ULTR [44]. Specifically, all the datasets con-
tain features, relevance judgments and data partitioning. In partic-
ular, according to the application scenarios where data is collected,
the features contain special domain information. This work lever-
ages heterogeneous LTR datasets, which contain three open-source
datasets, to pre-train the neck for learning cross-domain information
and obtaining reasoning capability.
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7 DISCUSSIONS

In this work, we propose S?phere to pre-train LTR transformers
for large-scale web search, incorporating labeled/unlabeled data
and multiple heterogeneous open-source LTR datasets. We further
deploy S%phere in the context of a real-world large-scale search
engine for performance evaluation. Some open issues are as follows.

First of all, S?phere aims at using both labeled/unlabeled query-
webpage pairs for pre-training and fine-tuning in LTR, where
a simple-yet-effective strategy derived from self-tuning has been
adopted and generates pseudo labels for unlabeled pairs. Apparently,
using advanced semi-supervised learning algorithms [7, 42] could
further improve the performance of S?phere. However, the primary
focus of this work is to leverage heterogeneous open-source LTR
datasets to pre-train the model. Proposing new semi-supervised
learning algorithms, hereby, might be out of our scope. Actually, we
have carried out extensive experiments to investigate and compare
the performance of different self-tuning strategies/settings in gen-
erating pseudo labels. The results show they could achieve similar
performance. Please refer to Appendix A.2 and A.3 for details.

In addition to algorithm design, we evaluate S?’phere using both
offline and online experiments to demonstrate the performance
advantages of the proposed algorithms. It is reasonable to doubt
whether our experiment settings are representative for LTR at
industry-scale. For online experiments, we include the comparisons
S?phere against the legacy system and multiple baseline LTR mod-
els, where we use the real-world web search traffics from the Baidu
Search engine for A/B tests. Please refer to Appendix B for more
details on online experiment settings.

8 CONCLUSIONS

In this work, we investigate the problem of pre-training LTR models
using both labeled and unlabeled samples, especially we focus on
the use of well-annotated samples in heterogeneous open-source
LTR datasets to boost the performance of pre-training. We pro-
pose S?phere—Semi-Supervised Pre-training with Heterogeneous
LTR data strategies for LTR tasks. Specifically, S’phere consists
of three steps: (1) Semi-supervised Feature Extraction Pre-training
via Perturbed Contrastive Loss, (2) Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets and (3) End-to-end LTR Fine-tuning
via Modular Network Composition. To demonstrate the effectiveness
of S?phere, we performed comprehensive offline and online exper-
iments, comparing its performance against numerous competitor
systems. Offline experiment results verify the superior performance
of S?phere compared to other competitors. Moreover, the real-
world application of S?phere exhibits a substantial improvement
in online ranking performance, which is consistent with the offline
results.
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Table 6: Offline comparative results on PNR under various ratios of labeled data.

Model >%

MLP + LambdaRank 1.982 - 2.077
CAR + LambdaRank 2.146 8.27% 2.236
LightGBM 2.109 6.41% 2.179
S%phere + NeuralNDCG|2.157  8.83% 2.246

10% 15% 20%
PNR Improvement | PNR Improvement| PNR Improvement| PNR Improvement
- 2.348 - 2.537 -
7.66% 2.464 4.94% 2.604 2.64%
4.91% 2.397 2.09% 2.583 1.81%
8.14% 2.486 5.88% 2.625 3.47%

Table 7: Comparative results on NDCG@4 of Self-tuned Label
Propagation in Step (1) and other semi-supervised LTR mod-
els under various ratios of labeled data.

NDCG@4

Model 5% 10%  15%  20%

Pointwise Self-training 49.74 5480 56.82 59.21
Pairwise Self-training 49.95 5491 56.81 59.50
Listwise Self-training 50.01 5498 57.32 59.54
Self-training w/ Pointwise-to-Pairwise | 49.83 5572  57.00  60.13
Self-training w/ Pointwise-to-Listwise | 49.88 55.48 57.85  60.07
Self-training w/ Pairwise-to-Pointwise | 50.04 56.05 57.67  60.39
Self-training w/ Pairwise-to-Listwise 49.97 56.20 57.64  60.52
Self-training w/ Listwise-to-Pairwise 50.28 56.12 57.56  60.71
Self-tuned Label Propagation 50.54 56.36 58.19 60.83

A OFFLINE EVALUATION
A.1 Offline Comparative Results

According to the offline experimental results of S?phere compared
with competitor systems under various ratios of labeled data on
NDCG@4, we choose MLP+LamdaRank, CAR+LambdaRank, Light-
GBM and Szphere+NeuralNDCG, which are the best LTR models
in MLP-based models, CAP-based models, tree-based models and
Szphere—based models, to conduct another offline evaluation on
PNR and report the result and improvement in Table 6 (referred to
Section 5.5.1). We could see that the experimental results are consis-
tent with Table 1. As illustrated in Table 1, our proposed model gains
the best performance on PNR and achieves the largest improve-
ment under various ratios of labeled data. Specifically, S?phere +
NeuralNDCG reaches 2.157, 2.246, 2.486 and 2.625 on PNR under
5%, 10%, 15% and 20%, respectively. Szphere + NeuralNDCG ad-
vances MLP+LambdaRank by 8.83%, 8.14%, 5.88% and 3.47% under
four ratios of labeled data. Moreover, there are two phenomena
to be observed from the competitor results. CAR + LambdaRank
outperforms the MLP-based model and LightGBM under all ratios
of labeled data. On the other hand, the MLP-based model achieves
worst results than other competitors. In general, the results of the
two offline comparative experiments are consistent.

A.2 Comparative Results of Self-tuned Label
Propagation

For Self-tuned Label Propagation (SLP) in Step (1), we choose Light-

GBM as the based ranking model with various ranking loss func-

tions (i.e., pointwise: RMSE, pairwise: RankNet and listwise: Lamb-

daMart). As shown in Table 7, we conduct extensive experiments
to investigate the performance of SLP compared with other semi-

supervised learning models. For each semi-supervised model, we

choose the model with the best performance of all validation rounds
for testing. Intuitively, we observe that SLP gains the best perfor-
mance compared with other semi-supervised LTR baselines under
four ratios of labeled data on NDCG@4. S?phere uses SLP to incor-
porate the diversity of prediction results of the listwise model and
the pointwise model in a loop of multiple rounds. As the stronger
learner, the listwise model predicts more accurate pseudo-labels
for the pointwise model. Then the weaker model, the pointwise
model, generates relatively inaccurate but diverse pseudo-labels to
train the stronger model. In such co-training mechanism, SLP gains
the best performance. Moreover, we could observe that SLP obtains
the largest improvement with 1.59% on NDCG@4 under the 20%
ratio of labeled data. Although co-training models can not obtain
the performance of SLP, all co-training models also outperform the
three self-training models.

A.3 Parameter Sensitivity: T

In this study, we conduct a series of experiments to investigate how
the number of rounds (i.e., T) impacts the performance of Self-tuned
Label Propagation. As shown in Table 8, we report the results of
SLP under various ratios of labeled data in 10 co-training rounds on
the validation set. Intuitively, the results show that SLP gains the
best performance at the 4”’, 6”’, 5% and 5" round on NDCG@4
under various ratios of labeled data, respectively. For each round,
the LightGBM-based LTR model with listwise loss function on the
combined data and generate pseudo-labels for the unlabeled data.
Then, the pseudo-labeled data is combined with the labeled data.
Next, the pointwise-based LTR model is trained on the combined
data and generates the results. According to the evaluation results,
we choose the trained SLP at the round with the best performance
for LTR tasks.

A.4 Offline Comparative Results

According to the offline experimental results of S?phere compared
with competitor systems under various ratios of labeled data on
NDCG@4, we choose MLP+LamdaRank, CAR+LambdaRank, Light-
GBM and S?phere+NeuraNDCG, which are the best LTR models
in MLP-based models, CAP-based models, tree-based models and
Szphere—based models, to conduct another offline evaluation on
PNR and report the result and improvement in Table 6 (referred to
Section 5.5.1). We could see that the experimental results are consis-
tent with Table 1. As illustrated in Table 1, our proposed model gains
the best performance on PNR and achieves the largest improve-
ment under various ratios of labeled data. Specifically, S*phere +
NeuralNDCG reaches 2.157, 2.246, 2.486 and 2.625 on PNR under
5%, 10%, 15% and 20%, respectively. S?phere + NeuraNDCG ad-
vances MLP+LambdaRank by 8.83%, 8.14%, 5.88% and 3.47% under
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Table 8: Performance of Self-tuned Label Propagation in Step (1) with LightGBM-based LTR model on NDCG@4 under various

ratios of labeled data in 10 rounds.

Ratio # of Rounds

1 2 3 4 5 6 7 8 9 10
5% 49.86 4997 4934 50.54 49.10 49.25 49.53 49.73 49.46 49.55
10% 53.68 53.15 53.61 54.66 55.13 56.37 53.07 53.65 54.71 5391
15% 55.63 56.37 56.55 57.12 58.19 56.59 56.28 54.86 56.06 56.34
20% 60.24 6030 6054 60.71 60.83 59.64 59.75 59.79 5993 60.18

four ratios of labeled data. Moreover, there are two phenomena
to be observed from the competitor results. CAR + LambdaRank
outperforms the MLP-based model and LightGBM under all ratios
of labeled data. On the other hand, the MLP-based model achieves
worst results than other competitors. In general, the results of the
two offline comparative experiments are consistent.

B IMPLEMENTATION DETAILS OF ONLINE
A/B TEST

In this section, we present the implementation detail of the online
A/B test. We conduct the experiment that compares the new ranking
system, which deploys our proposed model, with the legacy system
for seven days on top of Baidu Search! engine.

More specifically, the online baseline is a pre-trained language
model [45] with a simple MLP-based ranking regressor to carry
out the ranking task, which has been deployed at Baidu Search as
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the legacy ranking system. During the test, we replace the origi-
nal LTR model of the legacy system with S?phere to accomplish
the ranking task. Each day, we perform preprocessing by filter-
ing out pornographic and legally prohibited webpages. To obtain
relevance scores for the selected query-webpage pairs, we enlist
the help of eight common annotators. Quality control measures
are implemented by our professional annotators, ensuring that the
accuracy of the annotations exceeded 85%. The relevance scores
derived from the annotations are then used to train our proposed
model, employing a weighted average approach. The online ex-
periments are conducted using 5% of real-world web traffic from
Baidu Search, focusing on metrics that directly impact the user
experience. We evaluate the NDCG of the top 4 ranking results and
calculate ANDCG4 between the chosen model and online legacy
system. More online experimental results and analysis are discussed
in Section 5.6.2.

!Baidu Search, a large-scale search engine, https://www.baidu.com/
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