
S2phere: Semi-Supervised Pre-training for Web Search over
Heterogeneous Learning to Rank Data

Yuchen Li
Shanghai Jiao Tong

University
Shanghai, China

yuchenli@sjtu.edu.cn

Haoyi Xiong∗
Baidu Inc.

Beijing, China
haoyi.xiong.fr@ieee.org

Linghe Kong∗
Shanghai Jiao Tong

University
Shanghai, China

linghe.kong@sjtu.edu.cn

Qingzhong Wang
Baidu Inc.

Beijing, China
wangqingzhong@baidu.com

Shuaiqiang Wang
Baidu Inc.

Beijing, China
shqiang.wang@gmail.com

Guihai Chen
Shanghai Jiao Tong

University
Shanghai, China

gchen@cs.sjtu.edu.cn

Dawei Yin
Baidu Inc.

Beijing, China
yindawei@acm.org

ABSTRACT
While Learning to Rank (LTR) models on top of transformers have
been widely adopted to achieve decent performance, it is still chal-
lenging to train the model with sufficient data as only an extremely
small number of query-webpage pairs could be annotated versus tril-
lions of webpages available online and billions of web search queries
everyday. In the meanwhile, industry research communities have re-
leased a number of open-source LTR datasets with well annotations
but incorporating different designs of LTR features/labels (i.e., het-
erogeneous domains). In this work, inspired by the recent progress
in pre-training transformers for performance advantages, we study
the problem of pre-training LTR models using both labeled and
unlabeled samples, especially we focus on the use of well-annotated
samples in heterogeneous open-source LTR datasets to boost the
performance of pre-training. Hereby, we propose S2phere—Semi-
Supervised Pre-training with Heterogeneous LTR data strategies for
LTR models using both unlabeled and labeled query-webpage pairs
across heterogeneous LTR datasets. S2phere consists of a three-
step approach: (1) Semi-supervised Feature Extraction Pre-training
via Perturbed Contrastive Loss, (2) Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets and (3) End-to-end LTR Fine-tuning
via Modular Network Composition. Specifically, given an LTR model
composed of a backbone (the feature extractor), a neck (the module
to reason the orders) and a head (the predictor of ranking scores),
S2phere uses unlabeled/labeled data from the search engine to
pre-train the backbone in Step (1) via semi-supervised learning;
then Step (2) incorporates multiple open-source heterogeneous
LTR datasets to improve pre-training of the neck module as shared
parameters of cross-domain learning; and finally, S2phere in Step

∗Corresponding authors are Linghe Kong and Haoyi Xiong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599935

(3) composes the backbone and neck with a randomly-initialized
head into a whole LTR model and fine-tunes the model using search
engine data with various learning strategies. Extensive experiments
have been done with both offline experiments and online A/B Test
on top of Baidu search engine. The comparisons against numbers
of baseline algorithms confirmed the advantages of S2phere in
producing high-performance LTR models for web-scale search.

CCS CONCEPTS
• Information systems→ Learning to rank; Web search engines.

KEYWORDS
Learning to Rank, Large-scale Web Search, Pre-training, Heteroge-
neous Data

ACM Reference Format:
Yuchen Li, Haoyi Xiong, Linghe Kong, Qingzhong Wang, Shuaiqiang Wang,
Guihai Chen, and Dawei Yin. 2023. S2phere: Semi-Supervised Pre-training
forWeb Search over Heterogeneous Learning to Rank Data. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3580305.3599935

1 INTRODUCTION
Learning to Rank (LTR) models on top of deep neural networks [24,
31], such as transformers [36], have been widely used in web search
and achieved good performance in webpages ranking, such as
higher Hit Rate (HR), Discounted Cumulative Gain [14] (DCG)
and their derivatives. Given trillions of webpages available online
and billions of queries for web search, a search engine usually em-
ploys annotators, who label the relevance score for a number of
query-webpage pairs, to facilitate LTR model training.

While annotating massive collections of query-webpage pairs
with relevance scores is resource-consuming for a search engine [29],
the leading players in the community, such as Yahoo!, Microsoft
Bing and Baidu, have released several representative open-source
LTR datasets [6, 29, 44], incorporatingwell-annotated query-webpage
pairs with precise but using different features (i.e., variables de-
signed for ranking) and labels (i.e., scales of relevance scores for
webpages ranking). These datasets were collected from different

4437

https://orcid.org/0000-0002-3869-7881
https://orcid.org/0000-0002-5451-3253
https://orcid.org/0000-0001-9266-3044
https://orcid.org/0000-0003-1562-8098
https://orcid.org/0000-0002-9212-1947
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-0684-6205
https://doi.org/10.1145/3580305.3599935
https://doi.org/10.1145/3580305.3599935
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599935&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

search engines but all for similar LTR tasks. We call these datasets
as heterogeneous LTR datasets in this work. As it has become a
common practice to leverage large-scale open-source datasets to
pre-train models, especially transformers, for better performance in
computer vision [13] and natural language processing [11] domains,
we are wondering whether we can incorporate the open-source LTR
datasets into pre-training LTR models for enhanced ranking perfor-
mance despite the heterogeneity in their features and labels design.

In this work, inspired by the recent progress in pre-training
transformers for performance advantages, we study the problem of
pre-training LTR models for a search engine using a huge amount
of unlabeled query-webpage pairs with few labeled samples. We
especially focus on the use of well-annotated samples in multiple
heterogeneous open-source LTR datasets, where the feature and
sample space of every dataset are different from each other. To
achieve the goal, there remain several non-trivial issues as follows:

• LTR representation pre-training over heterogeneous features. The
goal of pre-training over open-source heterogeneous LTR data is
to learn the “logic and reasoning” of webpage ranking from these
datasets. However, the feature sets used in these LTR datasets are
different, and it is difficult to train a unified extractor working on
all these feature sets. In this way, a unified set of representations
should be learned from heterogeneous datasets for LTR, and then
the “logic and reasoning” of webpage ranking could work on top
of the unified representations despite feature heterogeneity. Thus,
there needs to pre-train the feature extractor and the module [12]
for ranking separately, so as to extract features from search engine
data while inheriting the ranking capacity from massive open-
source data, while ensuring the feature extractor and module work
together via unified representation in the final LTR model.

• LTR representation pre-training losses and objectives. In computer
vision and natural language processing practice, pre-training is
commonly formulated as a supervised and/or self-supervised
learning procedure, where the supervised learning relies on in-
tensive data annotation and self-supervised learning needs well-
designed losses to feedback models with meaningful supervision
signals, such as reconstruction loss and contrastive loss. In our
LTR settings, where labels for most query-webpage pairs at the
search engine are not available, supervised pre-training is with
limited capacity; in the meanwhile, the existing work that designs
reconstruction losses or contrastive losses for self-supervision
with LTR data is quite few. Thus, semi-supervised learning is de-
sired to pre-train the model with labeled data, unlabeled data (e.g.,
with pseudo labels), and novel self-supervision losses.

To address the above issues, we modularize the LTR models into
three components in a row—i.e., a feature extractor (backbone)
learned from the search engine data to generate the unified rep-
resentation, a ranker (neck) learned from both search engine and
open-source data via the unified representation, and a scorer (head)
that predicts ranking scores using the outputs of the ranking mod-
ule. Specifically, we propose S2phere—Semi-Supervised Pre-training
with Heterogeneous LTR data strategies for LTR models using both
unlabeled and labeled pairs across heterogeneous LTR datasets.

Specifically, on top of the backbone, neck and head, S2phere
consists of a three-step approach: (1) Semi-supervised Feature Ex-
traction Pre-training via Perturbed Contrastive Loss, (2) Cross-domain

Ranker Pre-training over Heterogeneous LTR Datasets and (3) End-
to-end LTR Fine-tuning via Modular Network Composition. S2phere
pre-trains the backbone in Step (1) via semi-supervised learning
using unlabeled/labeled data from the search engine. Then S2phere
in Step (2) incorporates multiple open-source heterogeneous LTR
datasets to train multiple LTR models and obtains the neck as a set
of shared parameters in these networks. Finally, S2phere composes
the backbone, neck and head into a whole LTR model. In Step (3),
it randomly re-initializes the head and fine-tunes the model using
search engine data via LTR loss using a warm-up fine-tuning strat-
egy, where the warm-up strategy first freezes the weights of the
neck to let the backbone and head adapt the input and output of the
neck in first several epochs, then leverages end-to-end training with
whole network and updates all weights to fit the data. In summary,
the main contributions are summarized as follows:
• We study the problem of pre-training LTR models using both
labeled/unlabeled data collected at the search engine and incor-
porating the open-source heterogeneous LTR datasets to boost
the performance of webpage ranking for search. To the best of
our knowledge, it is the first work in pre-training LTR models
that incorporates both search engine data and open-source data
by addressing data heterogeneity, modular networks and semi-
supervised learning issues.

• We propose S2phere consisting of three steps to pre-train the
feature extractor and the ranking module separately using search
engine and open-source data accordingly via various losses in
a semi-supervised manner. Then S2phere composes the feature
extractor (backbone), ranker module (neck) and scorer module
(head) to predict ranking scores together to form the end-to-end
LTR model and fine-tune the model on the search engine data
using warm-up strategies.

• We carry out extensive experiments with both offline experi-
ments and online A/B tests on top of Baidu Search engine to ver-
ify the effectiveness of S2phere. We compare S2phere against
a number of state-of-the-art baseline algorithms. Specifically,
we test the performance of these algorithms with four ratios
of labeled data, i.e., 5%, 10%, 15% and 20% of query-webpage
pairs at the search engine side labeled with relevance scores. The
comparisons confirmed the advantages of S2phere in producing
high-performance LTR models for web-scale search. In offline
comparisons, S2phere outperforms competitor systems with
1.03%∼4.09% on 𝑁𝐷𝐶𝐺@4. In the A/B Test with 5% real Baidu
web search traffics, we observe the advantage of S2phere which
achieves Δ𝑁𝐷𝐶𝐺@4 = 0.09%∼0.75% in parallel comparisons.

2 S2PHERE DESIGN AND ALGORITHM
In this section, we first formulate the research problem of LTR, then
detail the S2phere design and algorithm.

2.1 Problem Formulation
In this section, we introduce the formalization of the LTR task.
Given a set of search queries Q = {𝑞1, 𝑞2, . . . } and all archived
webpages D = {𝑑1, 𝑑2, . . . }, for each query 𝑞𝑖 ∈ Q, the search
engine could retrieve a set of relevant webpages denoted as 𝐷𝑖 =

{𝑑𝑖1, 𝑑
𝑖
2, . . . } ⊂ D. By employing annotation, a collection of rank-

ing scores 𝒚𝑖 = {𝑦𝑖1, 𝑦
𝑖
2, . . . } can be associated with 𝑞𝑖 , effectively

4438

S2phere: Semi-Supervised Pre-training for Web Search over Heterogeneous Learning to Rank Data KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Listwise-based
LTR Model

Pseudo-Labeled DataLabeled Search Data

train

+

Combined Data

train

Pseudo-Labeled Data
predict

train

predictT rounds

Multi-head
Attention

Add
&

Norm

Multi-head
Attention

Add
&

Norm

Feed
Forward

…
E

Blocks

Feature Extractor

MLP

MLP
Decoder

Reconstructed DataPerturbed Contrastive
Loss

+
Corrupted Data

Data 3

MLP
Decoder

Reconstructed Data

+

Corrupted Data Discriminative
Loss

Listwise-based
LTR Model

Pointwise-based
LTR Model

Add
&

Norm

Add
&

Norm

Discriminative
Loss

Multi-head
Attention

Add
&

Norm

Multi-head
Attention

Add
&

Norm

Feed
Forward

…
E

Blocks

Add
&

Norm

Add
&

Norm
MLP

Perturbed Contrastive
Loss

Scorer

Scorer 3

Feature Extractor 3

Data 2

MLP
Decoder

Reconstructed Data

+

Corrupted Data Discriminative
Loss

Multi-head
Attention

Add
&

Norm

Multi-head
Attention

Add
&

Norm

Feed
Forward

…
E

Blocks

Add
&

Norm

Add
&

Norm
MLP

Perturbed Contrastive
Loss

Scorer 2

Feature Extractor 2

Data 1

MLP
Decoder

Reconstructed Data

+

Corrupted Data Discriminative
Loss

Multi-head
Attention

Add
&

Norm

Multi-head
Attention

Add
&

Norm

Feed
Forward

…
E

Blocks

Add
&

Norm

Add
&

Norm
MLP

Perturbed Contrastive
Loss

Scorer 1

Feature Extractor 1

Heterogeneous
Datasets

Unified
Representation

Learned
Representation

predict

noise

noise

Step (1) Step (3)

Step (2)

Backbone

Neck

Head

Shared
Parameters

noise

noise

Figure 1: S2phere in three steps: (1) Semi-supervised Pre-training via Perturbed Contrastive Loss, (2) Cross-domain Ranker
Pre-training over Heterogeneous LTR Datasets, and (3) End-to-end LTR Fine-tuning via Modular Network Composition.

capturing the relevance of each webpage 𝑑𝑖
𝑗
∈ 𝐷𝑖 to the search

query 𝑞𝑖 . We adhere to the settings established in [29], where we
adopt a relevance label scaling approach from 0 to 4 to indicate
varying levels of relevance. Note that the features of search queries
and webpages are extracted by a pre-trained language model and
constructed through Baidu’s retrieval system [23]. All these raw
features are used as the inputs of webpage ranking.

Given the set of query-webpage pairs with relevance label anno-
tations, we utilize a set of triples (i.e.,T𝐿 = {(𝑞1, 𝐷1,𝒚1), (𝑞2, 𝐷2,𝒚2),
(𝑞3, 𝐷3,𝒚3), . . . }) to represent. This work aims to obtain an LTR
scoring function 𝑓 : Q × D → [0, 4], where the learning objective
of LTR is redefined to learn a scoring function 𝑓 which minimizes
the ranking loss as

L =
1

|T𝐿 |

| T𝐿 |∑︁
𝑖=1

©« 1
|𝐷𝑖 |

|𝐷𝑖 |∑︁
𝑗=1

ℓ (𝒚𝑖𝑗 , 𝑓 (𝑞
𝑖 , 𝑑𝑖𝑗))

ª®¬ , (1)

where ℓ denotes the ranking loss between the predicted relevance of
webpage 𝑑𝑖

𝑗
for query 𝑞𝑖 and the corresponding ground truth rele-

vance label 𝒚𝑖
𝑗
. Attributing the outstanding scalability, S2phere

is applicable with standard loss functions (i.e., pointwise, pair-
wise, and listwise). Given that annotators have limitations in la-
beling query-webpage pairs due to cost and time constraints, in-
corporating unlabeled query-webpage pairs becomes crucial in
LTR. Therefore, to formulate the semi-supervised LTR setting,

we introduce a set of unlabeled query-webpage pairs denoted as
T𝑈 = {(𝑞′1, 𝐷

′
1), (𝑞

′
2, 𝐷

′
2), . . . } ⊂ Q × 2D , where the number of

instances in T𝑈 greatly exceeds the number of instances in T𝐿 .
The research goal is to optimize above LTR problem by advancing

representation learning on top of the legacy LTR system [45] and
deploy the solution in the search engine introduced in Section 4.

2.2 Overall Framework Design
As illustrated in Figure 1, S2phere consists of three steps: (1) Semi-
supervised Feature Extraction Pre-training via Perturbed Contrastive
Loss, (2) Cross-domain Ranker Pre-training over Heterogeneous LTR
Datasets, and (3) End-to-end LTR Fine-tuning via Modular Network
Composition. Specifically, in Step (1), S2phere first generates high-
quality pseudo labels for each unlabeled query-webpage pair through
semi-supervised learning of multiple/diverse LTR models based on
various ranking losses. Then, S2phere learns generalizable repre-
sentations with the transformer network (i.e., the backbone), which
uses the contrastive loss for the reconstruction of perturbed data. In
Step (2), given the generalizable representations of query-webpage
pairs, S2phere leverages a Multi-Layer Perception (MLP) mecha-
nism (i.e., the neck) to conduct a cross-domain pre-trained ranker,
which utilizes discriminative loss to execute the ranking task on
heterogeneous LTR datasets. Eventually, in Step (3), S2phere com-
bines the transformer network (backbone), the pre-trained MLP

4439

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

mechanism (neck), and a scorer (i.e., the head) to conduct an end-
to-end modular LTR network and fine-tunes the modular network
on the pseudo-labeled dataset collected from Baidu Search.

2.3 Semi-supervised Feature Extraction
Pre-training via Perturbed Contrastive Loss

This step consists of two algorithms: Self-tuned Label Propagation
and Feature Extraction Pre-training via Perturbed Contrastive Loss.

2.3.1 Self-tuned Label Propagation. Given the overall sets of
queries Q and the set of all webpages D, S2phere first obtains
each possible query-webpage pair from the both datasets, denoted
as (𝑞𝑖 , 𝑑 𝑗𝑖) for ∀𝑞𝑖 ∈ Q and ∀𝑑 𝑗

𝑖
∈ 𝐷𝑖 ⊂ D, i.e., the 𝑗𝑡ℎ webpage

retrieved for the 𝑖𝑡ℎ query. For each query-webpage pair (𝑞𝑖 , 𝑑 𝑗𝑖),
S2phere further extracts an𝑚-dimensional feature vector 𝒙𝑖, 𝑗 rep-
resenting the features of the 𝑗𝑡ℎ webpage under the 𝑖𝑡ℎ query.
Then, the labeled and unlabeled sets of feature vectors can be pre-
sented as X𝐿 = {(𝒙𝑖, 𝑗 ,𝒚𝑖𝑗) |∀(𝑞𝑖 , 𝐷𝑖 ,𝒚) ∈ T𝐿 and ∀𝑑𝑖

𝑗
∈ 𝐷𝑖 } and

X𝑈 = {𝒙𝑖, 𝑗 |∀(𝑞𝑖 , 𝐷𝑖) ∈ T𝑈 }. S2phere further takes self-tuning
approach [21] to propagate labels from annotated query-webpage
pairs to those unlabeled ones.

Specifically, S2phere first trains an LTR model based onX𝐿 only
and then predicts the ranking scores of unlabeled pairs inX𝑈 using
the trained model. While S2phere setting the predicted scores as
pseudo labels for X𝑈 , it repeats training a new/updated LTR model
using both labeled/pseudo-labeled data and predicts new/updated
scores for unlabeled data with the new/updated model accordingly.
After 𝑇 repeats of self-tuning, S2phere assigns every unlabeled
query-webpage pair in X𝑈 an accurate estimate of the ranking
score, and then fuses them with X𝐿 into a new labeled set X𝐶 .

2.3.2 Feature Extraction Pre-training via Perturbed Con-
trastive Loss. As shown in Figure 1, S2phere leverages self-attentive
transformers to learn generalizable representations of query-webpage
pairs via perturbed contrastive loss in Feature Extraction Pre-training
via Perturbed Contrastive Loss.

Firstly, given an𝑚-dimensional feature vector �̃�𝑖, 𝑗 of a query-
webpage pair (�̃�𝑖, 𝑗 ,𝒚𝑖𝑗) ∈ X𝐶 , S2phere leverages a self-attentive
encoder to learn a generalizable representation 𝒛𝑖, 𝑗 . S2phere (1) is
fed a vector into a fully connected layer and produces a hidden rep-
resentation. Later, S2phere (2) feeds the hidden representation into
a self-attentive autoencoder, which consists of 𝐸 encoder blocks of
transformer. Specifically, each encoder block incorporates a multi-
head attention layer and a feed-forward layer, both followed by
layer normalization. S2phere (3) generates the learned representa-
tion 𝒛𝑖, 𝑗 from the last encoder block. For each original feature vector
�̃�𝑖, 𝑗 , the whole training process can be formulated as 𝒛𝑖, 𝑗 = 𝑓

\̃
(�̃�𝑖, 𝑗),

where \̃ is the set of parameters.
Then, S2phere utilizes a simple yet useful MLP mechanism for

the reconstruction task. Specifically, for each representation 𝒛𝑖, 𝑗 pro-
duced from the self-attentive autoencoder, S2phere leverages the
MLP mechanism to map 𝒛𝑖, 𝑗 to a generalizable representation 𝒛′

𝑖, 𝑗
,

which has the same dimension with the original feature vector �̃�𝑖, 𝑗 .
The whole training process can be formulated as 𝒛′

𝑖, 𝑗
= 𝑔\ ′ (𝒛𝑖, 𝑗),

where the \ ′ is the set of parameters.

Eventually, S2phere jointly optimizes the parameter sets \̃ and
\ ′ to minimize the perturbed contrastive loss as

L𝐶𝑜𝑛𝑡𝑟𝑎 =
1
|Q|

| Q |∑︁
𝑖=1

©« 1
|𝐷𝑖 |

|𝐷𝑖 |∑︁
𝑗=1

ℓ𝐶𝑜𝑛𝑡𝑟𝑎

(
�̃�𝑖, 𝑗 , 𝒛

′
𝑖, 𝑗

)ª®¬ (2)

where ℓ𝐶𝑜𝑛𝑡𝑟𝑎 is the squared error, which could be defined as

ℓ𝐶𝑜𝑛𝑡𝑟𝑎

(
�̃�𝑖, 𝑗 , 𝒛

′
𝑖, 𝑗

)
= ∥�̃�𝑖, 𝑗 − 𝒛′𝑖, 𝑗 ∥

2 . (3)

2.4 Cross-domain Ranker Pre-training over
Heterogeneous LTR Datasets

As presented in Figure 1, given both search data and open-source
data, S2phere in Step (2) trains multiple LTR models using hetero-
geneous LTR datasets via discriminative (LTR) learning, where a
set of parameters (in MLP) is shared as the neck of these models
and is expected to obtain the capability of ranking from all these
datasets.

Given the learned representation 𝒛𝑖, 𝑗 generated from Feature
Extraction Pre-training via Perturbed Contrastive Loss, S2phere
adopts an MLP model with a fully-connected layer to calculate
the predicted score 𝒔𝑖, 𝑗 . The whole process can be formulated as
𝒔𝑖, 𝑗 = 𝑓\ (𝒛𝑖, 𝑗), where \ is the set of discriminative parameters.
Against the ground truth, S2phere leverages the discriminative
loss function, which can be defined as

L𝐷𝑖𝑠𝑐 =
1
|Q|

| Q |∑︁
𝑖=1

©« 1
|𝐷𝑖 |

|𝐷𝑖 |∑︁
𝑗=1

ℓ𝐿𝑇𝑅

(
𝒚𝑖𝑗 , 𝒔𝑖, 𝑗

)ª®¬ (4)

where ℓ𝐿𝑇𝑅 represents the standard LTR loss function (i.e., point-
wise, pairwise and listwise).

To accomplish both perturbed contrastive tasks (Step (1)) and
discriminative (Step (2)) simultaneously, S2phere jointly optimizes
the perturbed contrastive loss L𝐶𝑜𝑛𝑡𝑟𝑎 and the discriminative loss
L𝐷𝑖𝑠𝑐 as the final loss function as

L𝐹𝑖𝑛𝑎𝑙 = 𝛼L𝐶𝑜𝑛𝑡𝑟𝑎 + (1 − 𝛼)L𝐷𝑖𝑠𝑐 , (5)

where the loss weights 𝛼 ∈ [0, 1] is a hyper-parameter to balance
two loss functions.

Given heterogeneous LTR datasets
{
X𝐶
1 , . . . ,X

𝐶
𝑁

}
, the goal of

S2phere is to obtain the pre-trained neck, which gains the reason-
ing capacity. In order to get the pre-trained neck on heterogeneous
LTR datasets, S2phere adopts the pre-training procedure shown in
Algorithm 1.

2.5 End-to-end LTR Fine-tuning via Modular
Network Composition

Given the pre-trained neck utilizing the above two steps, S2phere
combines a backbone, the pre-trained neck, and a head to conduct
a modular network for the downstream LTR task. Finally, S2phere
fine-tunes the modular network to execute the LTR task on the
pseudo-labeled search dataset, which accomplishes the end-to-end
LTR fine-tuning.

3 TRAINING PARADIGM
The conventional training paradigm of pre-training and fine-tuning
has been routinely leveraged and obtained significant achievements

4440

S2phere: Semi-Supervised Pre-training for Web Search over Heterogeneous Learning to Rank Data KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Algorithm 1: Pre-train S2phere on Heterogeneous
LTR Datasets
Input: the number of epochs 𝑒𝑝𝑠; hyper-parameters for
final loss 𝛼 , 𝛽 ; heterogeneous LTR datasets

{
X𝐶
1 , . . . ,X

𝐶
𝑁

}
;

backbones {𝐵1, . . . , 𝐵𝑁 }; heads {𝐻1, . . . , 𝐻𝑁 }
Output: 𝑁𝑝𝑟𝑒 — the pre-trained neck
1: for 𝑖 ∈ {1, . . . , 𝑁 } do
2: Choose the LTR dataset X𝐶

𝑖
;

3: for 𝑒𝑝 ∈ {1, . . . , 𝑒𝑝𝑠} do
4: Choose backbone 𝐵𝑖 and 𝐻𝑖 ;
5: Evaluate contrastive loss L𝐶𝑜𝑛𝑡𝑟𝑎 ;
6: Evaluate discriminative loss L𝐷𝑖𝑠𝑐 ;
7: Calculate final loss L𝐹𝑖𝑛𝑎𝑙 = 𝛼L𝐶𝑜𝑛𝑡𝑟𝑎 + 𝛽L𝐷𝑖𝑠𝑐 ;
8: end for
9: Update 𝑁𝑝𝑟𝑒 ;
10: end for
11: return 𝑁𝑝𝑟𝑒 ;

across many tasks. Nevertheless, this paradigm has not been demon-
strated to be appropriate for pre-training a reasoning neck on a
large-scale ranking system for web search. Therefore, we propose
a novel training paradigm for S2phere to fit the ranking task at
Baidu Search. Specifically, the training paradigm takes a three-stage
strategy: (1) Pre-training on Heterogeneous Datasets, (2)Warm-up
Fine-tuning, and (3) Post-fine-tuning. According to practical experi-
ence in deploying the ranking system for large-scale search engines,
the training paradigm is designed to be more effective and efficient.

Stage 1: Pre-training on Heterogeneous Datasets. As referred
to in Section 2, we leverage S2phere to accomplish pre-training on
heterogeneous datasets. S2phere is pre-trained on heterogeneous
datasets, i.e. MSLR-Web30K, MQ2007 and MQ2008, to learn the
reasoning capability for the neck by cross-domain ranking-task
learning. Specifically, we first train S2phere on MSLR-Web30K and
obtain the pre-trained neck. Then, the pre-trained neck combines a
backbone and a head to compose a new modular network, which
is trained on MQ2007 to execute the pre-training procedure. Even-
tually, we pre-train a new modular network with the trained neck
on MQ2008. In particular, three pre-trained datasets contain mas-
sively heterogeneous features which could enhance the reasoning
capability of S2phere.

Stage 2: Warm-up Fine-tuning. In this stage, we propose
Warm-up Fine-tuning to initialize the modular network. Specifi-
cally, following Pre-training on Heterogeneous Datasets, we first add
a fully-connected layer to the head and tail of the pre-trained neck,
respectively. Next, we freeze the weights of layers in the pre-trained
neck and fine-tune the rest parts of S2phere in the first several
epochs on the dataset collected from Baidu Search. In this way,
S2phere could be initialized in a low-cost and rapid way instead of
jointly fine-tuning the whole modular network.

Stage 3: Post-fine-tuning. In the final stage, given the warm-up
fine-tuned modular network, we jointly fine-tune the whole mod-
ules on the dataset collected from Baidu Search. In particular, we
leverage the warm-up fine-tuned S2phere to simultaneously accom-
plish the discriminative learning (LTR) and perturbed contrastive
learning tasks. After stage Post-fine-tuning, we finish the proposed

Annotations

Selected Queries

Users

Search
Engine S2phere

Annotators

Top-K
Retrieval

Index
Dataset

Indexed
Webpages

Query

Results

Indexing

Figure 2: Deployment of S2phere at Baidu Search.

training paradigm and accomplish the end-to-end pre-training and
fine-tuning for S2phere.

4 DEPLOYMENT OF S2PHERE
In this section, we present the deployment details of S2phere in
the context of Baidu Search. As illustrated in Figure 2, Baidu Search
is essential with three stages as follows: (1) Webpage Collection, (2)
Webpage Indexing and (3) Retrieval and Ranking.

Webpage Collection. To handle the vast number of webpages
available on the web, Baidu Search employs an efficient and pow-
erfulWeb Crawler. Web Crawler is responsible for collecting and
downloading webpages. The process begins withWeb Crawler scan-
ning a list of links to identify new webpages and those that have
been updated. It selectively stores the valid links containing the
desired content in a large downloading list. Then, based on the
real-time web traffic of Baidu Search, Web Crawler initiates the
downloading process for the websites present in the list.

Webpage Indexing. Baidu Search efficiently stores the vast
amount of downloaded webpages in distributed archival storage
systems, utilizing the capabilities of Fatman [26]. To achieve high-
performance search, Baidu Search builds efficient indices by em-
ploying DirectLoad [27]. Fatman leverages elastic resources, such
as underutilized servers and temporarily available storage, across
multiple regional data centers of Baidu, significantly reducing stor-
age costs. In parallel, DirectLoad ensures load balancing of indexing
tasks across these data centers.

Retrieval and Ranking. To facilitate the content retrieval by
search queries, Baidu adopts an extremely large-scale Chinese pre-
trained language model [32] for feature extraction and builds up an
ERNIE-based semantic content retrieval system [23]. Given the re-
trieved contents for a query, the Baidu search engine leverages LTR
systems, such as S2phere or the legacy system [45], for webpage
ranking. Note that the raw features of webpages and search queries
for LTR (introduced in Section 2.1) are extracted by the language
model and the retrieval system [23].
• Offline Training. In terms of webpages ranking in online settings,
following the proposed training paradigmmentioned in Section 3,
S2phere maintains an end-to-end fine-tuned LTR model via pre-
training on heterogeneous LTR datasets and fine-tuning on the
dataset streamed and annotated by Baidu Search.

• Online Serving. For online inference, S2phere adopts the fine-
tuned LTRmodel to serve the online ranking tasks. Given a query
and a webpage for online ranking, S2phere first transforms them
into an extracted query-webpage feature. Then, S2phere picks up
their feature representations and passes them to the fine-tuned
LTR model for inference in a fast manner at Baidu Search. Note
that, to further accelerate online DNN inference procedures, fea-
tures/embedding of queries/webpages and the weights of DNN

4441

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

models might be cached or re-stored over heterogeneous mem-
ory/storage devices [22] for fast look-ups, reads and updates.

5 EXPERIMENTS
To investigate the effectiveness of S2phere, we conduct extensive
offline and online experiments on a large-scale search engine. In
this section, we first introduce the experimental details. Then, we
present the result of offline and online experiments to prove the
effectiveness of our proposed model.

5.1 Datasets
5.1.1 Heterogeneous Open-source LTRDatasets. We leverage
three standard, publicly available datasets for pre-training.

• MSLR-Web30K contains 30,000 queries. Each query-webpage
pair is represented as a 136-dimensional feature vector.

• MQ2007 contains 1,692 queries. Each query-webpage pair of
MQ2007 is represented as a 46-dimensional feature vector.

• MQ2008 contains 784 queries. Similar to MQ2007, each query-
webpage pair of MQ2008 is represented as a 46-dimensional
feature vector.

Each query-webpage pair of the above three datasets is associated
with a relevance label on a scale from 0 to 4 to represent levels
of relevance from irrelevant to perfectly relevant. In our experi-
ments, we perform the five-fold cross-validation [29] and report
the average results across five folds.

5.1.2 Search Dataset. We collect the dataset with 65,000 queries
and over 3,340,000 query-webpage pairs from Baidu Search. For
each query, we collect webpages from each stage of the search
pipeline to ensure the diversity of the dataset. The dataset is an-
notated on our crowdsourcing platform, where a group of profes-
sionals annotate each query-webpage pair with an integer score
that ranges from 0 (bad) to 4 (perfect). Each query-webpage pair is
also represented as a real-valued feature vector. We randomly split
the dataset into training set (39,000 queries), validation set (13,000
queries), and test set (13,000 queries). In our experiments, features
are standardized before feeding them into LTR models.

5.2 Evaluation Methdology
Normalized Discounted Cumulative Gain (NDCG) [15] is a widely
employed metric for assessing relevance in ad-hoc search engine
contexts. It provides a comprehensive evaluation of the quality of
a ranking list generated by an LTR model for a given query and
its associated webpages. The LTR model predicts scores for each
webpage and generates the ranking list by sorting the scores in
descending order, considering the graded relevance of the webpages.
Additionally, the value of NDCG ranges from [0, 1], and a higher
NDCG@𝑁 indicates a better LTR model. In this work, we consider
the NDCG of the top 4 and 10 results (i.e., NDCG@4 and NDCG@10)
for business and research purposes.

Positive-NegativeRatio (𝑃𝑁𝑅) is a widely used pairwisemetric
for assessing the performance of search relevance in the industry.
Given a query 𝑞 and its associated ranked webpages 𝐷𝑞 , 𝑃𝑁𝑅 can

be defined as the ratio of concordant pairs to discordant pairs as

𝑃𝑁𝑅 =

∑
𝑑𝑖 ,𝑑 𝑗 ∈𝐷𝑞

1
{
𝑦𝑖 > 𝑦 𝑗

}
· 1

{
𝑓 (𝑞, 𝑑𝑖) > 𝑓

(
𝑞, 𝑑 𝑗

)}∑
𝑑𝑚,𝑑𝑛∈𝐷𝑞

1 {𝑦𝑚 > 𝑦𝑛} · 1 {𝑓 (𝑞, 𝑑𝑚) < 𝑓 (𝑞, 𝑑𝑛)}
, (6)

where 1 {𝑥 > 𝑦} is an indicator function (i.e., 1 {𝑥 > 𝑦} = 1 if 𝑥 >

𝑦, and 0 otherwise). 𝑃𝑁𝑅 evaluates the consistency between the
ground truth and the ranking score. In our offline experiments, we
report the average values over all test queries.

Interleaving [9] is a widely used metric for evaluating the per-
formance of an industrial search engine. In interleaved comparison,
two results generated from different systems are delivered to users,
whose click-through actions would be attributed to the system that
delivers the corresponding results. Specifically, the gain of the new
system 𝐴 over the base system 𝐵 could be formalized as

Δ𝐴𝐵 =
𝑤𝑖𝑛𝑠 (𝐴) + 0.5 × 𝑡𝑖𝑒𝑠 (𝐴, 𝐵)

𝑤𝑖𝑛𝑠 (𝐴) +𝑤𝑖𝑛𝑠 (𝐵) + 𝑡𝑖𝑒𝑠 (𝐴, 𝐵) − 0.5, (7)

where𝑤𝑖𝑛𝑠 (𝐴) (or𝑤𝑖𝑛𝑠 (𝐵)) is a counter to calculate the number of
times the user clicks the result generated from system 𝐴 (or 𝐵), and
𝑡𝑖𝑒𝑠 (𝐴, 𝐵) is otherwise increased by 1. Therefore, Δ𝐴𝐵 > 0 indicates
that 𝐴 is superior to 𝐵.

Good vs. Same vs. Bad (GSB) [41] is an online pairwise metric
evaluated by professional annotators. In manual comparison, two
results produced by the new system and the base system are pro-
vided to human experts that are required to judge which result is
better. Specifically, GSB could be computed as

ΔGSB =
#Good − #Bad

#Good + #Same + #Bad , (8)

where #Good (or #Bad) is the number of results generated from the
new system better (or worse) than the base system, and #Same in-
dicates two results are equally good or bad. In our online evaluation,
we conduct balanced interleaving and manual evaluation to compare
two online systems side-by-side.

5.3 Loss Function and Competitor Systems
To evaluate S2phere comprehensively, we adopt different state-of-
the-art ranking losses as follows:
• Root Mean Square Error (RMSE) is a commonly employed
pointwise loss of predicated relevancy.

• RankNet [4] and LambdaRank [4] are two popular pairwise
losses for LTR tasks both in research and industry.

• ListNet [5] and ListMLE [38] are two listwise losses, which
optimize the agreement between the prediction and ground truth.

• ApproxNDCG [28]and NeuralNDCG [25] are also two listwise
losses that directly optimize the evaluation metric (i.e., 𝑁𝐷𝐶𝐺).

Regarding the ranking model, we compare S2phere with the state-
of-the-art ranking model as follows:
• MLP refers to a popular ranking model and has been extensively
employed in the industry and research.

• Context-Aware Ranker (CAR) [24] refers to a ranking model
based on transformer architecture, which inputs raw feature
vectors of items in the same list and outputs real-world scores.

• XGBoost [8] refers to a Gradient Boosting Decision Tree (GBDT)-
based ranking model with a pairwise loss function.

4442

S2phere: Semi-Supervised Pre-training for Web Search over Heterogeneous Learning to Rank Data KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Table 1: Offline comparative results on 𝑁𝐷𝐶𝐺@4 and 𝑁𝐷𝐶𝐺@10 under various ratios of labeled data.

Model 5% 10% 15% 20%
NDCG@4 NDCG@10 NDCG@4 NDCG@10 NDCG@4 NDCG@10 NDCG@4 NDCG@10

RMSE 49.09 ± 0.12 52.80 ± 0.43 53.48 ± 0.15 57.32 ± 0.26 55.76 ± 0.09 59.82 ± 0.34 57.78 ± 0.25 63.18 ± 0.17
RankNet 48.76 ± 0.27 52.45 ± 0.19 53.02 ± 0.35 56.90 ± 0.08 55.52 ± 0.14 59.26 ± 0.34 57.56 ± 0.26 63.82 ± 0.22
LambdaRank 50.21 ± 0.18 53.63 ± 0.24 54.18 ± 0.35 58.09 ± 0.43 56.48 ± 0.31 60.47 ± 0.06 59.46 ± 0.15 63.73 ± 0.23
ListNet 49.64 ± 0.42 53.04 ± 0.13 53.89 ± 0.19 57.62 ± 0.38 56.19 ± 0.17 59.96 ± 0.10 58.13 ± 0.08 63.29 ± 0.17
ListMLE 48.09 ± 0.26 52.03 ± 0.19 52.50 ± 0.08 56.24 ± 0.20 54.84 ± 0.09 58.81 ± 0.44 56.80 ± 0.38 62.20 ± 0.25
ApproxNDCG 48.37 ± 0.35 52.21 ± 0.17 52.83 ± 0.22 56.53 ± 0.14 55.18 ± 0.45 59.07 ± 0.33 57.17 ± 0.31 62.52 ± 0.24
NeuralNDCG 50.08 ± 0.43 53.42 ± 0.48 54.27 ± 0.36 57.84 ± 0.41 56.50 ± 0.05 60.33 ± 0.19 59.42 ± 0.16 63.45 ± 0.20
CAR+RMSE 49.73 ± 0.37 52.43 ± 0.05 53.78 ± 0.32 57.45 ± 0.14 56.20 ± 0.03 59.97 ± 0.02 58.63 ± 0.28 63.48 ± 0.29
CAR+RankNet 50.01 ± 0.27 52.86 ± 0.27 53.29 ± 0.14 57.43 ± 0.35 57.32 ± 0.28 60.02 ± 0.20 58.54 ± 0.31 63.85 ± 0.49
CAR+LambdaRank 51.26 ± 0.38 54.37 ± 0.23 54.85 ± 0.40 58.82 ± 0.36 57.87 ± 0.26 61.57 ± 0.13 59.56 ± 0.27 64.78 ± 0.30
CAR+ListNet 51.09 ± 0.42 54.42 ± 0.38 54.63 ± 0.22 58.90 ± 0.19 57.65 ± 0.31 61.04 ± 0.37 60.01 ± 0.07 65.43 ± 0.11
CAR+ListMLE 50.14 ± 0.23 53.08 ± 0.17 53.40 ± 0.25 57.63 ± 0.18 56.48 ± 0.26 60.03 ± 0.34 58.85 ± 0.42 64.28 ± 0.28
CAR+ApproxNDCG 50.72 ± 0.32 53.75 ± 0.47 54.34 ± 0.36 58.29 ± 0.12 57.32 ± 0.13 60.65 ± 0.26 59.87 ± 0.10 65.13 ± 0.07
CAR+NeuralNDCG 50.83 ± 0.34 54.08 ± 0.36 54.57 ± 0.24 58.43 ± 0.34 57.46 ± 0.24 61.08 ± 0.35 60.03 ± 0.26 65.43 ± 0.34
XGBoost 48.37 ± 0.10 52.12 ± 0.36 52.83 ± 0.19 56.45 ± 0.45 56.14 ± 0.38 60.03 ± 0.31 58.03 ± 0.17 63.61 ± 0.38
LightGBM 51.01 ± 0.16 54.86 ± 0.27 54.98 ± 0.35 58.43 ± 0.21 57.32 ± 0.42 61.02 ± 0.40 59.54 ± 0.14 64.85 ± 0.23
S2phere+RMSE 50.84 ± 0.26 54.07 ± 0.46 54.94 ± 0.39 58.27 ± 0.42 56.93 ± 0.28 60.75 ± 0.19 60.04 ± 0.09 64.79 ± 0.35
S2phere+RankNet 51.26 ± 0.45 54.52 ± 0.32 55.02 ± 0.43 58.56 ± 0.35 57.02 ± 0.28 61.04 ± 0.21 60.35 ± 0.34 65.30 ± 0.43
S2phere+LambdaRank 51.84 ± 0.34 55.34 ± 0.27 55.71 ± 0.18 59.42 ± 0.25 57.71 ± 0.19 61.80 ± 0.33 60.87 ± 0.17 66.28 ± 0.15
S2phere+ListNet 52.09 ± 0.47 55.78 ± 0.36 56.04 ± 0.30 59.63 ± 0.21 58.02 ± 0.13 62.07 ± 0.23 61.46 ± 0.08 66.57 ± 0.06
S2phere+ListMLE 51.48 ± 0.24 54.82 ± 0.44 55.35 ± 0.26 58.64 ± 0.07 57.28 ± 0.05 61.34 ± 0.13 60.58 ± 0.28 65.52 ± 0.09
S2phere+ApproxNDCG 52.33 ± 0.19 55.87 ± 0.26 56.26 ± 0.17 59.75 ± 0.05 58.21 ± 0.47 62.25 ± 0.48 61.73 ± 0.04 66.73 ± 0.40
S2phere+NeuralNDCG 52.46 ± 0.09 56.01 ± 0.24 56.85 ± 0.32 59.87 ± 0.16 58.90 ± 0.15 62.38 ± 0.08 61.72 ± 0.47 66.84 ± 0.09

• LightGBM [18] is the most popular tree-based ranking model. In
our work, we implement LighGBM with a listwise loss function,
which outperforms other baselines [30].

Owing to the prior experience and high cost of deploying ranking
models, we compare S2phere with the above models without more
previous ranking models (e.g., RankSVM [17], GSF [2], DLCM [1],
et al.). For online evaluation, due to the restriction of business infor-
mation disclosures, this work reports the improvement to measure the
difference between S2phere and the legacy system [45].

5.4 Experimental Settings
For Self-tuned Label Propagation, we adopt LightGBM as the ranking
model and set the number of trees as 200, and the learning rate
as 0.01. Moreover, we replace 5% query-webpage pairs under each
query of X𝐶 with Gaussian noise to conduct the corrupted input.
We choose the encoder part of transformer, the MLP-based network,
and the scorer with various LTR loss functions as the backbone,
neck and head. Specifically, for the self-attentive autoencoder, the
number of encoder blocks 𝐸 is set as 4. Moreover, the number of
attention heads is set as 2 for RMSE and RankNet. For LambdaRank,
ListNet, ListMLE, ApproxNDCG, andNeuralNDCG loss, the number
of attention heads is 4. We set hyper-parameter 𝛼 as 0.1. For the
training paradigm, the learning rate is set as 0.001 for 10 epochs in
Warm-up Fine-tuning. Then, we jointly fine-tune the whole modules
to update all weights to fit search data in Post-fine-tuning.

5.5 Offline Experimental Results
5.5.1 Comparative Results. Table 1 presents the offline result
of S2phere compared with competitor systems on 𝑁𝐷𝐶𝐺@4 and
𝑁𝐷𝐶𝐺@10. Intuitively, we could obverse that S2phere outper-
forms all competitors with different losses under four ratios of
labeled data. Specifically, our proposed model gains the best per-
formance against all competitors. Particularly, S2phere gains the
largest margin with 4.37%, 4.35%, 4.06% and 4.93% improvements

Table 2: Offline results on 𝑃𝑁𝑅 under 5% labeled data.

Model PNR Improvement
MLP + LambdaRank 1.982 -
CAR + LambdaRank 2.146 8.27%
LightGBM 2.109 6.41%
S2phere + NeuralNDCG 2.157 8.83%

on 𝑁𝐷𝐶𝐺@4 and 3.98%, 3.63%, 3.57%, 4.64% on 𝑁𝐷𝐶𝐺@10. Fur-
thermore, the performance of our model improves consistently as
the ratio of labeled data increases. S2phere utilizes Semi-supervised
Feature Extraction Pre-training via Perturbed Contrastive Loss to
incorporate diverse signals and reconstruct the corrupted data.
Cross-domain Ranker Pre-training over Heterogeneous LTR Datasets
could pre-train the neck to learn more cross-domain information
via heterogeneous LTR datasets. The pre-trained modular network
is fine-tuned following the proposed training paradigm. Moreover,
there are more phenomena to be observed from the competitor
results. First, CAR-based LTR models achieve the best performance
among competitor systems. Specifically, CAR+LambdaRank shows
the best result for all CAR-based methods. Secondly, for the tree-
based methods, LightGBM performs better than XGBoost under
four ratios of labelled data. Finally, MLP+LambdaRank outperforms
other MLP-based LTR models. Thus, we choose MLP+LamdaRank,
CAR+LambdaRank, LightGBM and S2phere + NeuralNDCG to con-
duct another offline evaluation and sample the result on 5% labeled
data in Table 2. We observe that our proposed model outperforms
the other three competitors. Specifically, S2phere+NeuralNDCG
gains 2.157 on 𝑃𝑁𝑅 and advances MLP+LambdaRank by 8.83%.
Moreover, the tree-based model and CAR-based model also outper-
form the MLP-based LTR model, which is consistent in two offline
evaluations. More comparative results on 𝑃𝑁𝑅 can be found in
Appendix A.1.

5.5.2 Ablation Results. To assess the effectiveness of three key
components in S2phere, we performed extensive ablation experi-
ments in this study. Specifically, S2phere w/o SLP (Self-tuned Label

4443

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

Table 3: Ablation studies of Step (1) Semi-supervised Feature
Extraction Pre-training via Perturbed Contrastive Loss and
Step (3) End-to-end LTR Fine-tuning via Modular Network
Composition on 𝑁𝐷𝐶𝐺@4 for S2phere with NeuralNDCG.

Model 𝑁𝐷𝐶𝐺@4
5% 10% 15% 20%

S2phere 52.46 56.85 58.90 61.72
S2phere w/o SLP of Step (1) 51.50 55.91 58.43 61.26
S2phere w/o FEPPC of Step (1) 51.81 56.01 58.19 61.39
S2phere w/oWarm-up Fine-tuning 51.94 56.15 58.49 61.47

Table 4: Ablation studies of Step (2) Cross-domain Ranker
Pre-training over Heterogeneous LTR Dataset on 𝑁𝐷𝐶𝐺@4 for
S2phere with NeuralNDCG.

Model 𝑁𝐷𝐶𝐺@4
5% 10% 15% 20%

S2phere w/ LTR Dataset 1 & 2 & 3 52.46 56.85 58.90 61.72
S2phere w/ LTR Dataset 1 51.28 55.36 58.60 61.42
S2phere w/ LTR Dataset 2 50.82 54.87 57.59 60.13
S2phere w/ LTR Dataset 3 50.89 54.69 57.47 60.09
S2phere w/ LTR Dataset 1 & 2 51.86 56.53 58.69 61.67
S2phere w/ LTR Dataset 1 & 3 51.42 56.45 58.71 61.50
S2phere w/ LTR Dataset 2 & 3 50.91 55.17 57.68 60.48

Propagation) of Step (1) leverages a pointwise-based self-training
approach to generate pseudo-labels. S2phere w/o FEPPC (Feature
Extraction Pre-training via Perturbed Contrastive Loss) of Step (3)
directly utilizes the MLP-based LTR model which has the same
structure as the neck on the combined data with Gaussian noise.
S2phere w/o Cross-domain Ranker Pre-training over Heterogeneous
LTR Dataset is the proposed model pre-trained without three cross-
domain LTR datasets. Eventually, S2phere w/o Step (3) can be
considered as S2phere withoutWarm-up Fie-tuning in terms of our
proposed training paradigm.

As illustrated in Table 3, we present ablation study results of
S2phere+NeuralNCDG w/o Step (1) and Step (3). We could see that
the two steps contribute to positive improvements for S2phere
under various ratios of labeled data. Table 3 presents that SLP of
Step (1) achieves the improvement with 0.96%, 0.94%, 0.47% and
0.46% on 𝑁𝐷𝐶𝐺@4 for S2phere+NeuralNDCG on average under
5%, 10%, 15% and 20%, respectively. Similarly, FEPPC of Step (1) also
improve the performance for S2phere+NeuralNCDG with 0.65%,
0.84%, 0.71%, and 0.33% on 𝑁𝐷𝐶𝐺@4 under four ratios of label data.
Besides, the ablation study results of S2phere w/o Warm-up Fine-
tuning could demonstrate the effectiveness of our proposed training
paradigm. Specifically, Warm-up Fine-tuning in our proposed train-
ing paradigm averagely boosts the performance of S2phere with
0.52%, 0.70%, 0.41% and 0.25% on 𝑁𝐷𝐶𝐺@4.

Table 4 reports the ablation study results of Cross-domain Ranker
Pre-training over Heterogeneous LTR Datasets (Step (2)) of S2phere+
NeuralNDCG. Specifically, we set the notation of LTR Dataset 1,
LTR Dataset 2 and LTR Dataset 3 as MSLR-Web30K, MQ2007 and
MQ2008, respectively. In general, Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets gains the best performance against
other competitors. Specifically, Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets averagely gains the largest im-
provement for S2phere with 1.64%, 2.16%, 1.43% and 1.63% on
𝑁𝐷𝐶𝐺@4 under four ratios of labeled data, respectively. We also

Table 5: Performance improvements of the online evaluation.

Model Δ𝐴𝐵 ΔGSB
Random Long-Tail Random Long-Tail

The Legacy System [45] - - - -
CAR+LambdaRank 0.17% 0.25% 3.96% 3.13%
LightGBM 0.14% 0.32% 3.50% 7.50%
S2phere+NeuralNDCG 0.21% 0.27% 5.00% 6.50%

1 2 3 4 5 6 7
of Days

0.0

0.4

0.8

ND
CG

@
4

(%
)

ListNet RankNet

1 2 3 4 5 6 7
of Days

0.0

0.4

0.8

ND
CG

@
4

(%
)

RMSE NeuralNDCG

(a) 5% ratio of labeled data (b) 10% ratio of labeled data

1 2 3 4 5 6 7
of Days

0.0

0.4

0.8

ND
CG

@
4

(%
)

1 2 3 4 5 6 7
of Days

0.0

0.4

0.8

ND
CG

@
4

(%
)

(c) 15% ratio of labeled data (d) 20% ratio of labeled data

Figure 3: Online comparative performance (Δ𝑁𝐷𝐶𝐺@4) of
S2phere with various losses for 7 days (t-test with 𝑝 < 0.05
over the baseline). S2phere could boost the performance com-
pared with the legacy system on all days.

observe that pre-trained S2phere with LTR Dataset 1 obtains the
best performance among three single datasets and has the smallest
margin with LTR Dataset 1 & 2 & 3. Among all compositions of
two LTR datasets, LTR Dataset 1 & 2 achieves the best performance.
Moreover, we could infer that LTR Dataset 1 has the most enormous
impact among the three datasets.

5.6 Online Experimental Results
5.6.1 Interleaving and Manual Evaluation. Table 5 illustrates
performance improvements of three models on Δ𝐴𝐵 and ΔGSB.
We first find that S2phere+NeuralNDCG trained under 20% la-
beled data achieves substantial improvements for the online system
on two metrics, which demonstrates the practicability and effec-
tiveness of our proposed model. Specifically, our proposed model
outperforms the legacy system with 0.21% and 5.00% on Δ𝐴𝐵 and
ΔGSB, respectively. Also, we observe that S2phere outperforms
the legacy system for long-tail queries whose search frequencies are
lower than 10 per week. Particularly, the advantages of Δ𝐴𝐵 and
ΔGSB are 0.27% and 6.50%. Besides, we see that LightGBM gains the
largest margin for long-tail queries, which reveals that tree-based
models could be better adapted to this scenario.

5.6.2 Online A/B Test. During the online A/B test, we performed
a seven-day experiment to compare the ranking system deployed
with S2phere against the legacy system. The implementation details
of the online A/B Test could be found in the Appendix. Figure 3
illustrates the improvement of S2phere with various losses com-
pared with the legacy system on Δ𝑁𝐷𝐶𝐺@4. S2phere consistently

4444

S2phere: Semi-Supervised Pre-training for Web Search over Heterogeneous Learning to Rank Data KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

enhances performance across all days compared to the legacy sys-
tem, proving its practicality in elevating the performance of Baidu
Search. Moreover, notable advancements are observed as S2phere
delivers significant improvements on top of the Baidu Search frame-
work. Specifically, it is obvious that the largest improvements of
trained S2phere+NeuralNDCG on four ratios of labled data are
0.60%, 0.63%, 0.65% and 0.75% on Δ𝑁𝐷𝐶𝐺@4, respectively. The
notable advancements observed clearly indicate the effectiveness
of S2phere. Eventually, we could observe that S2phere performs
stably on all days.

6 RELATEDWORK
Learning to Rank.We could divide LTR models into three families
according to loss functions: pointwise [10, 20], pairwise [16, 43]
and listwise [5, 34]. The pointwise model transformers ranking
tasks into regression or classification problems to accurately match
labels with query-webpage pairs. However, the pairwise model
formulates a pair of webpages into a webpage pair and redefines
LTR tasks as classification problems. The listwise model considers
the entire webpage list as a single sample and directly optimizes the
evaluation metrics (e.g., NDCG [3, 15, 39]) without decomposing
it into pairwise or pointwise comparisons. In our work, S2phere
leverages both labeled/unlabeled data collected at the search engine
and incorporates open-source heterogeneous LTR datasets to boost the
performance of webpage ranking for search.

Semi-supervised Learning for LTR. Semi-supervised learning
has been utilized for pseudo-label generation in many machine
learning tasks [33, 40], however, the use of semi-supervised learning
in LTR has not been well investigated. [21] takes a semi-supervised
approach to consider the divergence between the prediction of
various LTR models and incorporates such divergence to improve
co-training performance in industrial practice. In this work, inspired
by [21], S2phere takes a self-tuning approach to propagate labels
from annotated query-webpage pairs to unlabeled ones.

Perturbed Contrastive Learning. The essence of perturbed
contrastive learning is to reconstruct corrupted data and learn the
joint probability distribution of samples via the training process.
Variational autoencoder structures [19, 35] have been used to recon-
struct data. Specifically, [35] adopts a cascaded residual autoencoder
adapted from the denoised autoencoder [37] to calculate the resid-
ual and reconstruct the corrupted multi-modal data sequence. In
this work, S2phere utilizes a transformer-based denoised autoencoder
to reconstruct structured data via perturbed contrastive learning.

Open-source LTR Datasets. Open-source LTR datasets sig-
nificantly contribute to the development of the research and ap-
plication of LTR. Nowadays, many large-scale search companies
have proposed their standard and publicly available LTR datasets,
i.e., MSLR-Web30K [29], MQ2007 [29], MQ2008 [29], Yahoo! LTR
dataset [6], and Baidu-ULTR [44]. Specifically, all the datasets con-
tain features, relevance judgments and data partitioning. In partic-
ular, according to the application scenarios where data is collected,
the features contain special domain information. This work lever-
ages heterogeneous LTR datasets, which contain three open-source
datasets, to pre-train the neck for learning cross-domain information
and obtaining reasoning capability.

7 DISCUSSIONS
In this work, we propose S2phere to pre-train LTR transformers
for large-scale web search, incorporating labeled/unlabeled data
and multiple heterogeneous open-source LTR datasets. We further
deploy S2phere in the context of a real-world large-scale search
engine for performance evaluation. Some open issues are as follows.

First of all, S2phere aims at using both labeled/unlabeled query-
webpage pairs for pre-training and fine-tuning in LTR, where
a simple-yet-effective strategy derived from self-tuning has been
adopted and generates pseudo labels for unlabeled pairs. Apparently,
using advanced semi-supervised learning algorithms [7, 42] could
further improve the performance of S2phere. However, the primary
focus of this work is to leverage heterogeneous open-source LTR
datasets to pre-train the model. Proposing new semi-supervised
learning algorithms, hereby, might be out of our scope. Actually, we
have carried out extensive experiments to investigate and compare
the performance of different self-tuning strategies/settings in gen-
erating pseudo labels. The results show they could achieve similar
performance. Please refer to Appendix A.2 and A.3 for details.

In addition to algorithm design, we evaluate S2phere using both
offline and online experiments to demonstrate the performance
advantages of the proposed algorithms. It is reasonable to doubt
whether our experiment settings are representative for LTR at
industry-scale. For online experiments, we include the comparisons
S2phere against the legacy system and multiple baseline LTR mod-
els, where we use the real-world web search traffics from the Baidu
Search engine for A/B tests. Please refer to Appendix B for more
details on online experiment settings.

8 CONCLUSIONS
In this work, we investigate the problem of pre-training LTRmodels
using both labeled and unlabeled samples, especially we focus on
the use of well-annotated samples in heterogeneous open-source
LTR datasets to boost the performance of pre-training. We pro-
pose S2phere—Semi-Supervised Pre-training with Heterogeneous
LTR data strategies for LTR tasks. Specifically, S2phere consists
of three steps: (1) Semi-supervised Feature Extraction Pre-training
via Perturbed Contrastive Loss, (2) Cross-domain Ranker Pre-training
over Heterogeneous LTR Datasets and (3) End-to-end LTR Fine-tuning
via Modular Network Composition. To demonstrate the effectiveness
of S2phere, we performed comprehensive offline and online exper-
iments, comparing its performance against numerous competitor
systems. Offline experiment results verify the superior performance
of S2phere compared to other competitors. Moreover, the real-
world application of S2phere exhibits a substantial improvement
in online ranking performance, which is consistent with the offline
results.

ACKNOWLEDGMENTS
This work was supported in part by National Key R&D Program
of China (No. 2021ZD0110303), NSFC grant 62141220, 61972253,
U1908212, 62172276, 61972254, the Program for Professor of Spe-
cial Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning, Shanghai Science and Technology Development
Funds 23YF1420500, Open Research Projects of Zhejiang Lab No.
2022NL0AB01.

4445

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

REFERENCES
[1] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking refinement. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval. 135–144.

[2] Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Nadav Golbandi, Michael Bender-
sky, and Marc Najork. 2019. Learning groupwise multivariate scoring functions
using deep neural networks. In Proceedings of the 2019 ACM SIGIR International
Conference on Theory of Information Retrieval. 85–92.

[3] Sebastian Bruch, Masrour Zoghi, Michael Bendersky, and Marc Najork. 2019.
Revisiting ApproximateMetric Optimization in the Age of Deep Neural Networks.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR. 1241–1244.

[4] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank
with Nonsmooth Cost Functions. In Advances in Neural Information Processing
Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006.
193–200.

[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
International Conference on Machine Learning. 129–136.

[6] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview. In Proceedings of the Yahoo! Learning to Rank Challenge, held at ICML
(JMLR Proceedings, Vol. 14). JMLR.org, 1–24.

[7] Baixu Chen, Junguang Jiang, Ximei Wang, Pengfei Wan, Jianmin Wang, and
Mingsheng Long. 2022. Debiased Self-Training for Semi-Supervised Learning.
In Processing of the 36th Annual Conference on Neural Information Processing
Systems.

[8] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 785–794.

[9] Aleksandr Chuklin, Anne Schuth, Ke Zhou, and Maarten De Rijke. 2015. A
comparative analysis of interleaving methods for aggregated search. ACM Trans-
actions on Information Systems (TOIS) 33, 2 (2015), 1–38.

[10] William S Cooper, Fredric C Gey, and Daniel P Dabney. 1992. Probabilistic
retrieval based on staged logistic regression. In Proceedings of the 15th annual
international ACM SIGIR conference on Research and development in information
retrieval. 198–210.

[11] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in neural
information processing systems 32 (2019).

[12] Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah Smith, and Luke Zettle-
moyer. 2022. DEMix Layers: Disentangling Domains for Modular Language
Modeling. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics. 5557–5576.

[13] Kaiming He, Ross Girshick, and Piotr Dollár. 2019. Rethinking imagenet pre-
training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4918–4927.

[14] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[15] Kalervo Järvelin and Jaana Kekäläinen. 2017. IR evaluation methods for retrieving
highly relevant documents. In ACM SIGIR Forum, Vol. 51. 243–250.

[16] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD international Conference on Knowledge
Discovery & Data Mining. 133–142.

[17] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 217–226.

[18] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems. 3146–3154.

[19] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
Processing of the 2nd International Conference on Learning Representations.

[20] Ping Li, Qiang Wu, and Christopher Burges. 2008. McRank: Learning to Rank
Using Multiple Classification and Gradient Boosting. In Advances in Neural
Information Processing Systems. 65–72.

[21] Yuchen Li, Haoyi Xiong, Qingzhong Wang, Linghe Kong, Hao Liu, Haifang Li,
Jiang Bian, Shuaiqiang Wang, Guihai Chen, Dejing Dou, et al. 2023. COLTR:
Semi-supervised Learning to Rank with Co-training and Over-parameterization
for Web Search. IEEE Transactions on Knowledge and Data Engineering (2023).

[22] Hao Liu, Qian Gao, Jiang Li, Xiaochao Liao, Hao Xiong, Guangxing Chen, Wenlin
Wang, Guobao Yang, Zhiwei Zha, Daxiang Dong, et al. 2021. Jizhi: A fast and
cost-effective model-as-a-service system for web-scale online inference at Baidu.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining. 3289–3298.
[23] Yiding Liu, Weixue Lu, Suqi Cheng, Daiting Shi, Shuaiqiang Wang, Zhicong

Cheng, and Dawei Yin. 2021. Pre-trained Language Model forWeb-scale Retrieval
in Baidu Search. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining.

[24] Przemysław Pobrotyn, Tomasz Bartczak, Mikołaj Synowiec, Radosław Biało-
brzeski, and Jarosław Bojar. 2020. Context-aware learning to rank with self-
attention. arXiv preprint arXiv:2005.10084 (2020).

[25] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. Neuralndcg: Direct
optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

[26] An Qin, Dianming Hu, Jun Liu, Wenjun Yang, and Dai Tan. 2014. Fatman: Cost-
saving and reliable archival storage based on volunteer resources. Proceedings of
the VLDB Endowment 7, 13 (2014), 1748–1753.

[27] An Qin, Mengbai Xiao, Jin Ma, Dai Tan, Rubao Lee, and Xiaodong Zhang. 2019.
DirectLoad: A Fast Web-scale Index System across Large Regional Centers. In
2019 IEEE 35th International Conference on Data Engineering (ICDE). 1790–1801.

[28] Tao Qin, Tie-Yan Liu, and Hang Li. 2010. A general approximation framework
for direct optimization of information retrieval measures. Inf. Retr. 13, 4 (2010),
375–397. https://doi.org/10.1007/s10791-009-9124-x

[29] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[30] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In Proceedings of the 9th
International Conference on Learning Representations, ICLR.

[31] Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. 2022.
Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with
Provable Convergence. In International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA (Proceedings of Machine Learning
Research, Vol. 162). PMLR, 18122–18152.

[32] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin
Tian, Danxiang Zhu, Hao Tian, and Hua Wu. 2019. Ernie: Enhanced representa-
tion through knowledge integration. arXiv preprint arXiv:1904.09223 (2019).

[33] Martin Szummer and Emine Yilmaz. 2011. Semi-supervised learning to rank
with preference regularization. In Proceedings of the 20th ACM Conference on
Information and Knowledge Management. 269–278.

[34] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. 77–86.

[35] Luan Tran, Xiaoming Liu, Jiayu Zhou, and Rong Jin. 2017. Missing Modali-
ties Imputation via Cascaded Residual Autoencoder. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition. 4971–4980.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems. 5998–6008.

[37] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion. Journal of
machine learning research (JMLR) 11 (2010), 3371–3408.

[38] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
International Conference on Machine Learning. 1192–1199.

[39] Tianbao Yang. 2022. Algorithmic Foundation of Deep X-risk Optimization. arXiv
preprint arXiv:2206.00439 (2022).

[40] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. 2022. A survey on deep
semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering
(2022).

[41] Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu, and Yi Guan. 2011. Automatically
generating questions from queries for community-based question answering. In
Proceedings of 5th international joint conference on natural language processing.
929–937.

[42] Zhen Zhao, Luping Zhou, Lei Wang, Yinghuan Shi, and Yang Gao. 2022. LaSSL:
label-guided self-training for semi-supervised learning. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence. 9208–9216.

[43] Zhaohui Zheng, Keke Chen, Gordon Sun, and Hongyuan Zha. 2007. A regression
framework for learning ranking functions using relative relevance judgments. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. 287–294.

[44] Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, Shuaiqiang Wang,
and Dawei Yin. 2022. A Large Scale Search Dataset for Unbiased Learning to
Rank. In NeurIPS.

[45] Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Shuaiqiang
Wang, Daiting Shi, Zhicong Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in Baidu search. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 4014–4022.

4446

https://doi.org/10.1007/s10791-009-9124-x

S2phere: Semi-Supervised Pre-training for Web Search over Heterogeneous Learning to Rank Data KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Table 6: Offline comparative results on 𝑃𝑁𝑅 under various ratios of labeled data.

Model 5% 10% 15% 20%
𝑃𝑁𝑅 Improvement 𝑃𝑁𝑅 Improvement 𝑃𝑁𝑅 Improvement 𝑃𝑁𝑅 Improvement

MLP + LambdaRank 1.982 - 2.077 - 2.348 - 2.537 -
CAR + LambdaRank 2.146 8.27% 2.236 7.66% 2.464 4.94% 2.604 2.64%
LightGBM 2.109 6.41% 2.179 4.91% 2.397 2.09% 2.583 1.81%
S2phere + NeuralNDCG 2.157 8.83% 2.246 8.14% 2.486 5.88% 2.625 3.47%

Table 7: Comparative results on 𝑁𝐷𝐶𝐺@4 of Self-tuned Label
Propagation in Step (1) and other semi-supervised LTR mod-
els under various ratios of labeled data.

Model 𝑁𝐷𝐶𝐺@4
5% 10% 15% 20%

Pointwise Self-training 49.74 54.80 56.82 59.21
Pairwise Self-training 49.95 54.91 56.81 59.50
Listwise Self-training 50.01 54.98 57.32 59.54
Self-training w/ Pointwise-to-Pairwise 49.83 55.72 57.00 60.13
Self-training w/ Pointwise-to-Listwise 49.88 55.48 57.85 60.07
Self-training w/ Pairwise-to-Pointwise 50.04 56.05 57.67 60.39
Self-training w/ Pairwise-to-Listwise 49.97 56.20 57.64 60.52
Self-training w/ Listwise-to-Pairwise 50.28 56.12 57.56 60.71
Self-tuned Label Propagation 50.54 56.36 58.19 60.83

A OFFLINE EVALUATION
A.1 Offline Comparative Results
According to the offline experimental results of S2phere compared
with competitor systems under various ratios of labeled data on
𝑁𝐷𝐶𝐺@4, we chooseMLP+LamdaRank, CAR+LambdaRank, Light-
GBM and S2phere+NeuralNDCG, which are the best LTR models
in MLP-based models, CAP-based models, tree-based models and
S2phere-based models, to conduct another offline evaluation on
𝑃𝑁𝑅 and report the result and improvement in Table 6 (referred to
Section 5.5.1). We could see that the experimental results are consis-
tent with Table 1. As illustrated in Table 1, our proposedmodel gains
the best performance on 𝑃𝑁𝑅 and achieves the largest improve-
ment under various ratios of labeled data. Specifically, S2phere +
NeuralNDCG reaches 2.157, 2.246, 2.486 and 2.625 on 𝑃𝑁𝑅 under
5%, 10%, 15% and 20%, respectively. S2phere + NeuralNDCG ad-
vances MLP+LambdaRank by 8.83%, 8.14%, 5.88% and 3.47% under
four ratios of labeled data. Moreover, there are two phenomena
to be observed from the competitor results. CAR + LambdaRank
outperforms the MLP-based model and LightGBM under all ratios
of labeled data. On the other hand, the MLP-based model achieves
worst results than other competitors. In general, the results of the
two offline comparative experiments are consistent.

A.2 Comparative Results of Self-tuned Label
Propagation

For Self-tuned Label Propagation (SLP) in Step (1), we choose Light-
GBM as the based ranking model with various ranking loss func-
tions (i.e., pointwise: RMSE, pairwise: RankNet and listwise: Lamb-
daMart). As shown in Table 7, we conduct extensive experiments
to investigate the performance of SLP compared with other semi-
supervised learning models. For each semi-supervised model, we

choose the model with the best performance of all validation rounds
for testing. Intuitively, we observe that SLP gains the best perfor-
mance compared with other semi-supervised LTR baselines under
four ratios of labeled data on 𝑁𝐷𝐶𝐺@4. S2phere uses SLP to incor-
porate the diversity of prediction results of the listwise model and
the pointwise model in a loop of multiple rounds. As the stronger
learner, the listwise model predicts more accurate pseudo-labels
for the pointwise model. Then the weaker model, the pointwise
model, generates relatively inaccurate but diverse pseudo-labels to
train the stronger model. In such co-training mechanism, SLP gains
the best performance. Moreover, we could observe that SLP obtains
the largest improvement with 1.59% on 𝑁𝐷𝐶𝐺@4 under the 20%
ratio of labeled data. Although co-training models can not obtain
the performance of SLP, all co-training models also outperform the
three self-training models.

A.3 Parameter Sensitivity: 𝑇
In this study, we conduct a series of experiments to investigate how
the number of rounds (i.e.,𝑇) impacts the performance of Self-tuned
Label Propagation. As shown in Table 8, we report the results of
SLP under various ratios of labeled data in 10 co-training rounds on
the validation set. Intuitively, the results show that SLP gains the
best performance at the 4𝑡ℎ , 6𝑡ℎ , 5𝑡ℎ and 5𝑡ℎ round on 𝑁𝐷𝐶𝐺@4
under various ratios of labeled data, respectively. For each round,
the LightGBM-based LTR model with listwise loss function on the
combined data and generate pseudo-labels for the unlabeled data.
Then, the pseudo-labeled data is combined with the labeled data.
Next, the pointwise-based LTR model is trained on the combined
data and generates the results. According to the evaluation results,
we choose the trained SLP at the round with the best performance
for LTR tasks.

A.4 Offline Comparative Results
According to the offline experimental results of S2phere compared
with competitor systems under various ratios of labeled data on
𝑁𝐷𝐶𝐺@4, we chooseMLP+LamdaRank, CAR+LambdaRank, Light-
GBM and S2phere+NeuralNDCG, which are the best LTR models
in MLP-based models, CAP-based models, tree-based models and
S2phere-based models, to conduct another offline evaluation on
𝑃𝑁𝑅 and report the result and improvement in Table 6 (referred to
Section 5.5.1). We could see that the experimental results are consis-
tent with Table 1. As illustrated in Table 1, our proposedmodel gains
the best performance on 𝑃𝑁𝑅 and achieves the largest improve-
ment under various ratios of labeled data. Specifically, S2phere +
NeuralNDCG reaches 2.157, 2.246, 2.486 and 2.625 on 𝑃𝑁𝑅 under
5%, 10%, 15% and 20%, respectively. S2phere + NeuralNDCG ad-
vances MLP+LambdaRank by 8.83%, 8.14%, 5.88% and 3.47% under

4447

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yuchen Li et al.

Table 8: Performance of Self-tuned Label Propagation in Step (1) with LightGBM-based LTR model on 𝑁𝐷𝐶𝐺@4 under various
ratios of labeled data in 10 rounds.

Ratio # of Rounds
1 2 3 4 5 6 7 8 9 10

5% 49.86 49.97 49.34 50.54 49.10 49.25 49.53 49.73 49.46 49.55
10% 53.68 53.15 53.61 54.66 55.13 56.37 53.07 53.65 54.71 53.91
15% 55.63 56.37 56.55 57.12 58.19 56.59 56.28 54.86 56.06 56.34
20% 60.24 60.30 60.54 60.71 60.83 59.64 59.75 59.79 59.93 60.18

four ratios of labeled data. Moreover, there are two phenomena
to be observed from the competitor results. CAR + LambdaRank
outperforms the MLP-based model and LightGBM under all ratios
of labeled data. On the other hand, the MLP-based model achieves
worst results than other competitors. In general, the results of the
two offline comparative experiments are consistent.

B IMPLEMENTATION DETAILS OF ONLINE
A/B TEST

In this section, we present the implementation detail of the online
A/B test.We conduct the experiment that compares the new ranking
system, which deploys our proposed model, with the legacy system
for seven days on top of Baidu Search1 engine.

More specifically, the online baseline is a pre-trained language
model [45] with a simple MLP-based ranking regressor to carry
out the ranking task, which has been deployed at Baidu Search as

the legacy ranking system. During the test, we replace the origi-
nal LTR model of the legacy system with S2phere to accomplish
the ranking task. Each day, we perform preprocessing by filter-
ing out pornographic and legally prohibited webpages. To obtain
relevance scores for the selected query-webpage pairs, we enlist
the help of eight common annotators. Quality control measures
are implemented by our professional annotators, ensuring that the
accuracy of the annotations exceeded 85%. The relevance scores
derived from the annotations are then used to train our proposed
model, employing a weighted average approach. The online ex-
periments are conducted using 5% of real-world web traffic from
Baidu Search, focusing on metrics that directly impact the user
experience. We evaluate the 𝑁𝐷𝐶𝐺 of the top 4 ranking results and
calculate Δ𝑁𝐷𝐶𝐺4 between the chosen model and online legacy
system. More online experimental results and analysis are discussed
in Section 5.6.2.
1Baidu Search, a large-scale search engine, https://www.baidu.com/

4448

	Abstract
	1 Introduction
	2 S2phere Design and Algorithm
	2.1 Problem Formulation
	2.2 Overall Framework Design
	2.3 Semi-supervised Feature Extraction Pre-training via Perturbed Contrastive Loss
	2.4 Cross-domain Ranker Pre-training over Heterogeneous LTR Datasets
	2.5 End-to-end LTR Fine-tuning via Modular Network Composition

	3 Training Paradigm
	4 Deployment of S2phere
	5 Experiments
	5.1 Datasets
	5.2 Evaluation Methdology
	5.3 Loss Function and Competitor Systems
	5.4 Experimental Settings
	5.5 Offline Experimental Results
	5.6 Online Experimental Results

	6 Related Work
	7 Discussions
	8 Conclusions
	References
	A Offline Evaluation
	A.1 Offline Comparative Results
	A.2 Comparative Results of Self-tuned Label Propagation
	A.3 Parameter Sensitivity: T
	A.4 Offline Comparative Results

	B Implementation Details of Online A/B Test

